These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20695603)

  • 1. Substrate effects on the wettability of electrospun titania-poly(vinylpyrrolidone) fiber mats.
    Jabal JM; McGarry L; Sobczyk A; Aston DE
    Langmuir; 2010 Aug; 26(16):13550-5. PubMed ID: 20695603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability of electrospun poly(vinylpyrrolidone)-titania fiber mats on glass and ITO substrates in aqueous media.
    Jabal JM; McGarry L; Sobczyk A; Aston DE
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2325-31. PubMed ID: 20355869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.
    Arecchi A; Mannino S; Weiss J
    J Food Sci; 2010 Aug; 75(6):N80-8. PubMed ID: 20722944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers.
    Lee MW; An S; Joshi B; Latthe SS; Yoon SS
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1232-9. PubMed ID: 23347600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers.
    Sharma CS; Sharma A; Madou M
    Langmuir; 2010 Feb; 26(4):2218-22. PubMed ID: 20070083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and surface properties of electrospun chitosan nanofibers.
    Desai K; Kit K; Li J; Zivanovic S
    Biomacromolecules; 2008 Mar; 9(3):1000-6. PubMed ID: 18198844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.
    Dufficy MK; Geiger MT; Bonino CA; Khan SA
    Langmuir; 2015 Nov; 31(45):12455-63. PubMed ID: 26477547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.
    Kayaci F; Ozgit-Akgun C; Donmez I; Biyikli N; Uyar T
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6185-94. PubMed ID: 23088303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun nylon-6 spider-net like nanofiber mat containing TiO(2) nanoparticles: a multifunctional nanocomposite textile material.
    Pant HR; Bajgai MP; Nam KT; Seo YA; Pandeya DR; Hong ST; Kim HY
    J Hazard Mater; 2011 Jan; 185(1):124-30. PubMed ID: 20875702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally tunable surface wettability of electrospun fiber mats: polystyrene/poly(N-isopropylacrylamide) blended versus crosslinked poly[(N-isopropylacrylamide)-co-(methacrylic acid)].
    Muthiah P; Hoppe SM; Boyle TJ; Sigmund W
    Macromol Rapid Commun; 2011 Nov; 32(21):1716-21. PubMed ID: 21994211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application.
    Tonglairoum P; Chuchote T; Ngawhirunpat T; Rojanarata T; Opanasopit P
    Pharm Dev Technol; 2014 Jun; 19(4):430-7. PubMed ID: 23651060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coaxially electrospun PVDF-Teflon AF and Teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties.
    Muthiah P; Hsu SH; Sigmund W
    Langmuir; 2010 Aug; 26(15):12483-7. PubMed ID: 20614895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-formaldehyde composites.
    Jiang S; Hou H; Greiner A; Agarwal S
    ACS Appl Mater Interfaces; 2012 May; 4(5):2597-603. PubMed ID: 22548451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic properties of titania nanostructured films fabricated from Titania nanosheets.
    Shibata T; Sakai N; Fukuda K; Ebina Y; Sasaki T
    Phys Chem Chem Phys; 2007 May; 9(19):2413-20. PubMed ID: 17492105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysiloxane nanofibers via surface initiated polymerization of vapor phase reagents: a mechanism of formation and variable wettability of fiber-bearing substrates.
    Rollings DA; Veinot JG
    Langmuir; 2008 Dec; 24(23):13653-62. PubMed ID: 18980346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats.
    Ji Y; Liang K; Shen X; Bowlin GL
    Carbohydr Polym; 2014 Jan; 101():68-74. PubMed ID: 24299750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of protein adsorption on functionalized electrospun fibers.
    Grafahrend D; Calvet JL; Klinkhammer K; Salber J; Dalton PD; Möller M; Klee D
    Biotechnol Bioeng; 2008 Oct; 101(3):609-21. PubMed ID: 18461606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel globular protein electrospun fiber mat with the addition of polysilsesquioxane.
    Soares RM; Patzer VL; Dersch R; Wendorff J; da Silveira NP; Pranke P
    Int J Biol Macromol; 2011 Nov; 49(4):480-6. PubMed ID: 21664927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.