These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 20695777)
1. Cell-derived matrix enhances osteogenic properties of hydroxyapatite. Tour G; Wendel M; Tcacencu I Tissue Eng Part A; 2011 Jan; 17(1-2):127-37. PubMed ID: 20695777 [TBL] [Abstract][Full Text] [Related]
2. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction. Tour G; Wendel M; Tcacencu I J Tissue Eng Regen Med; 2014 Nov; 8(11):841-9. PubMed ID: 22782939 [TBL] [Abstract][Full Text] [Related]
3. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
4. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181 [TBL] [Abstract][Full Text] [Related]
5. Human fibroblast-derived extracellular matrix constructs for bone tissue engineering applications. Tour G; Wendel M; Tcacencu I J Biomed Mater Res A; 2013 Oct; 101(10):2826-37. PubMed ID: 23471711 [TBL] [Abstract][Full Text] [Related]
6. Bone repair using periodontal ligament progenitor cell-seeded constructs. Tour G; Wendel M; Moll G; Tcacencu I J Dent Res; 2012 Aug; 91(8):789-94. PubMed ID: 22736447 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect. Khadka A; Li J; Li Y; Gao Y; Zuo Y; Ma Y J Craniofac Surg; 2011 Sep; 22(5):1852-8. PubMed ID: 21959450 [TBL] [Abstract][Full Text] [Related]
8. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139 [TBL] [Abstract][Full Text] [Related]
9. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
10. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
11. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related]
12. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds. Jones GL; Walton R; Czernuszka J; Griffiths SL; El Haj AJ; Cartmell SH J Biomed Mater Res A; 2010 Sep; 94(4):1244-50. PubMed ID: 20694991 [TBL] [Abstract][Full Text] [Related]
13. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692 [TBL] [Abstract][Full Text] [Related]
14. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Eitan Y; Sarig U; Dahan N; Machluf M Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649 [TBL] [Abstract][Full Text] [Related]
15. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
16. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
18. Poly-ε-caprolactone composite scaffolds for bone repair. Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350 [TBL] [Abstract][Full Text] [Related]
19. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells. Patel M; Dunn TA; Tostanoski S; Fisher JP J Tissue Eng Regen Med; 2010 Aug; 4(6):422-36. PubMed ID: 20047194 [TBL] [Abstract][Full Text] [Related]
20. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]