BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 20695887)

  • 1. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
    Shen CH; Wang YF; Kovalevsky AY; Harrison RW; Weber IT
    FEBS J; 2010 Sep; 277(18):3699-714. PubMed ID: 20695887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
    Liu F; Kovalevsky AY; Tie Y; Ghosh AK; Harrison RW; Weber IT
    J Mol Biol; 2008 Aug; 381(1):102-15. PubMed ID: 18597780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir.
    Kar P; Knecht V
    J Comput Aided Mol Des; 2012 Feb; 26(2):215-32. PubMed ID: 22350569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir.
    Markland W; Rao BG; Parsons JD; Black J; Zuchowski L; Tisdale M; Tung R
    J Virol; 2000 Aug; 74(16):7636-41. PubMed ID: 10906218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors.
    Tie Y; Wang YF; Boross PI; Chiu TY; Ghosh AK; Tozser J; Louis JM; Harrison RW; Weber IT
    Protein Sci; 2012 Mar; 21(3):339-50. PubMed ID: 22238126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin.
    Sayer JM; Louis JM
    Proteins; 2009 May; 75(3):556-68. PubMed ID: 18951411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations.
    Yu YX; Wang W; Sun HB; Zhang LL; Wang LF; Yin YY
    SAR QSAR Environ Res; 2022 Oct; 33(10):805-831. PubMed ID: 36322686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M.
    Kovalevsky AY; Tie Y; Liu F; Boross PI; Wang YF; Leshchenko S; Ghosh AK; Harrison RW; Weber IT
    J Med Chem; 2006 Feb; 49(4):1379-87. PubMed ID: 16480273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50.
    Mittal S; Bandaranayake RM; King NM; Prabu-Jeyabalan M; Nalam MN; Nalivaika EA; Yilmaz NK; Schiffer CA
    J Virol; 2013 Apr; 87(8):4176-84. PubMed ID: 23365446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs.
    Tie Y; Boross PI; Wang YF; Gaddis L; Liu F; Chen X; Tozser J; Harrison RW; Weber IT
    FEBS J; 2005 Oct; 272(20):5265-77. PubMed ID: 16218957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potent antiviral HIV-1 protease inhibitor GRL-02031 adapts to the structures of drug resistant mutants with its P1'-pyrrolidinone ring.
    Chang YC; Yu X; Zhang Y; Tie Y; Wang YF; Yashchuk S; Ghosh AK; Harrison RW; Weber IT
    J Med Chem; 2012 Apr; 55(7):3387-97. PubMed ID: 22401672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent new antiviral compound shows similar inhibition and structural interactions with drug resistant mutants and wild type HIV-1 protease.
    Wang YF; Tie Y; Boross PI; Tozser J; Ghosh AK; Harrison RW; Weber IT
    J Med Chem; 2007 Sep; 50(18):4509-15. PubMed ID: 17696515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains.
    Tie Y; Boross PI; Wang YF; Gaddis L; Hussain AK; Leshchenko S; Ghosh AK; Louis JM; Harrison RW; Weber IT
    J Mol Biol; 2004 Apr; 338(2):341-52. PubMed ID: 15066436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir.
    Tie Y; Kovalevsky AY; Boross P; Wang YF; Ghosh AK; Tozser J; Harrison RW; Weber IT
    Proteins; 2007 Apr; 67(1):232-42. PubMed ID: 17243183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods.
    Chen J; Wang X; Zhu T; Zhang Q; Zhang JZ
    J Chem Inf Model; 2015 Sep; 55(9):1903-13. PubMed ID: 26317593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.