These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2069599)

  • 1. Dissociation of decreases in renal cellular energetics and recovery of renal microsomal translation during chronic cyclosporine A administration.
    Buss WC; Griffey R
    Biochem Pharmacol; 1991 Jun; 42(1):71-6. PubMed ID: 2069599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new proposal for the mechanism of cyclosporine A nephrotoxicity. Inhibition of renal microsomal protein chain elongation following in vivo cyclosporine A.
    Buss WC; Stepanek J; Bennett WM
    Biochem Pharmacol; 1989 Nov; 38(22):4085-93. PubMed ID: 2597185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the inhibition of renal translation in the Sprague-Dawley rat following in vivo cyclosporin A.
    Buss WC; Stepanek J
    Int J Immunopharmacol; 1993 Jan; 15(1):63-76. PubMed ID: 8432624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclosporine-induced renal dysfunction: correlations between cellular events and whole kidney function.
    Bennett WM; Houghton DC; Buss WC
    J Am Soc Nephrol; 1991 May; 1(11):1212-9. PubMed ID: 1932633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue specificity of translation inhibition in Sprague-Dawley rats following in vivo cyclosporin A.
    Buss WC; Stepanek J
    Int J Immunopharmacol; 1993 Aug; 15(6):775-82. PubMed ID: 8407058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in ATP after cyclosporin A treatment in a renal epithelial cell line in the rat studied by 31P-NMR spectroscopy.
    Ruiz-Cabello J; Buss WC; Collier SW; Glazer RI; Cohen JS
    Res Commun Mol Pathol Pharmacol; 1994 Oct; 86(1):3-13. PubMed ID: 7850254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in renal structure and function in a rat model of cyclosporine nephrotoxicity.
    Jackson NM; Hsu CH; Visscher GE; Venkatachalam MA; Humes HD
    J Pharmacol Exp Ther; 1987 Aug; 242(2):749-56. PubMed ID: 3612560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dose-dependent inhibition of rat renal translation elongation seen after in vivo cyclosporin A is not caused by cyclosporin metabolites.
    Buss WC; Bowers LD
    Toxicology; 1995 Jun; 100(1-3):17-25. PubMed ID: 7624874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retardation of renal growth and ornithine decarboxylase activity by cyclosporine after uninephrectomy in rats.
    Logan JL; Benson B
    Transplantation; 1987 Oct; 44(4):559-62. PubMed ID: 3672608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and functional correlates of postischemic renal ATP levels.
    Stromski ME; Cooper K; Thulin G; Gaudio KM; Siegel NJ; Shulman RG
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6142-5. PubMed ID: 3461481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficial effects of renal denervation and prazosin on GFR and renal blood flow after cyclosporine in rats.
    Murray BM; Paller MS
    Clin Nephrol; 1986; 25 Suppl 1():S37-9. PubMed ID: 3708934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance study of renal transplantation.
    Chan L; Shapiro JI
    Ren Physiol Biochem; 1989; 12(3):181-90. PubMed ID: 2623344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance and biochemical studies to determine the synergistic detrimental effects of renal ischemia on cyclosporine nephrotoxicity in the rat.
    Chan L; Suleymanlar G; Malhotra D; Lien YH; Shapiro JI
    Transplant Proc; 1991 Feb; 23(1 Pt 1):711-3. PubMed ID: 1990660
    [No Abstract]   [Full Text] [Related]  

  • 14. Early renal pathophysiology in an acute model of cyclosporine nephrotoxicity in rats.
    Racusen LC; Kone BC; Solez K
    Ren Fail; 1987; 10(1):29-37. PubMed ID: 3823505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic cyclosporine administration induces renal P-glycoprotein in rats.
    Liu J; Brunner LJ
    Eur J Pharmacol; 2001 Apr; 418(1-2):127-32. PubMed ID: 11334874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cyclosporine on magnesium metabolism in rats.
    Barton CH; Vaziri ND; Mina-Araghi S; Crosby S; Seo MI
    J Lab Clin Med; 1989 Sep; 114(3):232-6. PubMed ID: 2769016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary renovascular effects of erythromycin in the rat: relationship to cyclosporine nephrotoxicity.
    McCormack AJ; Snipes RG; Dillon JJ; Yang JJ; Finn WF
    Ren Fail; 1990; 12(4):241-8. PubMed ID: 2100828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclosporine augments renal mitochondrial function in vivo and reduces renal blood flow.
    Lemmi CA; Pelikan PC; Sikka SC; Hirschberg R; Geesaman B; Miller RL; Park KS; Liu SC; Koyle M; Rajfer J
    Am J Physiol; 1989 Nov; 257(5 Pt 2):F837-41. PubMed ID: 2589485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance spectroscopy for the determination of renal metabolic rate in vivo.
    Freeman DM; Chan L; Yahaya H; Holloway P; Ross BD
    Kidney Int; 1986 Jul; 30(1):35-42. PubMed ID: 3747341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclosporine nephrotoxicity: blood volume, sodium conservation, and renal hemodynamics.
    Devarajan P; Kaskel FJ; Arbeit LA; Moore LC
    Am J Physiol; 1989 Jan; 256(1 Pt 2):F71-8. PubMed ID: 2912168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.