These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20696173)

  • 1. Hydrodynamic interaction of two unsteady model microorganisms.
    Giacché D; Ishikawa T
    J Theor Biol; 2010 Nov; 267(2):252-63. PubMed ID: 20696173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientational relaxation time of bottom-heavy squirmers in a semi-dilute suspension.
    Ishikawa T; Pedley TJ; Yamaguchi T
    J Theor Biol; 2007 Nov; 249(2):296-306. PubMed ID: 17854838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The long-time dynamics of two hydrodynamically-coupled swimming cells.
    Michelin S; Lauga E
    Bull Math Biol; 2010 May; 72(4):973-1005. PubMed ID: 20013354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational diffusion of macromolecules and nanoparticles modeled as non-overlapping bead arrays in an effective medium.
    Allison S; Pei H; Haynes M; Xin Y; Law L; Labrum J; Augustin D
    J Phys Chem B; 2008 May; 112(18):5858-66. PubMed ID: 18416571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.
    Allison SA; Pei H
    J Phys Chem B; 2009 Jun; 113(23):8056-65. PubMed ID: 19453112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic entrapment of bacteria swimming near a solid surface.
    Giacché D; Ishikawa T; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056309. PubMed ID: 21230578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion of model microorganisms swimming in a nonuniform suspension.
    Ishikawa T; Pedley TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033008. PubMed ID: 25314530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid mechanics of swimming bacteria with multiple flagella.
    Kanehl P; Ishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042704. PubMed ID: 24827275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of hydrodynamic interaction between swimming bacteria.
    Gyrya V; Aranson IS; Berlyand LV; Karpeev D
    Bull Math Biol; 2010 Jan; 72(1):148-83. PubMed ID: 19644725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swimming microorganisms acquire optimal efficiency with multiple cilia.
    Omori T; Ito H; Ishikawa T
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30201-30207. PubMed ID: 33199601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of external flow on the dynamics of swimming microorganisms near surfaces.
    Chilukuri S; Collins CH; Underhill PT
    J Phys Condens Matter; 2014 Mar; 26(11):115101. PubMed ID: 24590066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective viscosity of dilute bacterial suspensions: a two-dimensional model.
    Haines BM; Aronson IS; Berlyand L; Karpeev DA
    Phys Biol; 2008 Nov; 5(4):046003. PubMed ID: 19029599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming with an image.
    Di Leonardo R; Dell'Arciprete D; Angelani L; Iebba V
    Phys Rev Lett; 2011 Jan; 106(3):038101. PubMed ID: 21405301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow.
    Clay TW; Grünbaum D
    J Exp Biol; 2010 Apr; 213(Pt 8):1281-92. PubMed ID: 20348340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entraining in trout: a behavioural and hydrodynamic analysis.
    Przybilla A; Kunze S; Rudert A; Bleckmann H; Brücker C
    J Exp Biol; 2010 Sep; 213(Pt 17):2976-86. PubMed ID: 20709926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wake-based unsteady modeling of the aquatic beetle Dytiscus marginalis.
    Whittlesey RW
    J Theor Biol; 2011 Dec; 291():14-21. PubMed ID: 21920372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of flow fields and particle trajectories in ciliary suspension feeding.
    Mayer S
    Bull Math Biol; 2000 Nov; 62(6):1035-59. PubMed ID: 11127513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.