These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20696382)

  • 1. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex.
    Stokes CC; Isaacson JS
    Neuron; 2010 Aug; 67(3):452-65. PubMed ID: 20696382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
    Pressler RT; Strowbridge BW
    J Neurosci; 2020 Dec; 40(50):9701-9714. PubMed ID: 33234611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.
    Burton SD; LaRocca G; Liu A; Cheetham CE; Urban NN
    J Neurosci; 2017 Feb; 37(5):1117-1138. PubMed ID: 28003347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb.
    Huang L; Garcia I; Jen HI; Arenkiel BR
    Front Neural Circuits; 2013; 7():32. PubMed ID: 23459611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcircuits mediating feedforward and feedback synaptic inhibition in the piriform cortex.
    Suzuki N; Bekkers JM
    J Neurosci; 2012 Jan; 32(3):919-31. PubMed ID: 22262890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel interneuronal network in the mouse posterior piriform cortex.
    Zhang C; Szabó G; Erdélyi F; Rose JD; Sun QQ
    J Comp Neurol; 2006 Dec; 499(6):1000-15. PubMed ID: 17072835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single dendrite-targeting interneurons generate branch-specific inhibition.
    Stokes CC; Teeter CM; Isaacson JS
    Front Neural Circuits; 2014; 8():139. PubMed ID: 25505385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
    Chen WR; Shen GY; Shepherd GM; Hines ML; Midtgaard J
    J Neurophysiol; 2002 Nov; 88(5):2755-64. PubMed ID: 12424310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Odor representations in mammalian cortical circuits.
    Isaacson JS
    Curr Opin Neurobiol; 2010 Jun; 20(3):328-31. PubMed ID: 20207132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry.
    Tyan L; Chamberland S; Magnin E; Camiré O; Francavilla R; David LS; Deisseroth K; Topolnik L
    J Neurosci; 2014 Mar; 34(13):4534-47. PubMed ID: 24671999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
    Huang L; Ung K; Garcia I; Quast KB; Cordiner K; Saggau P; Arenkiel BR
    J Neurosci; 2016 Aug; 36(34):8856-71. PubMed ID: 27559168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional properties of cortical feedback projections to the olfactory bulb.
    Markopoulos F; Rokni D; Gire DH; Murthy VN
    Neuron; 2012 Dec; 76(6):1175-88. PubMed ID: 23259952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical feedback control of olfactory bulb circuits.
    Boyd AM; Sturgill JF; Poo C; Isaacson JS
    Neuron; 2012 Dec; 76(6):1161-74. PubMed ID: 23259951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns.
    Liu YC; Cheng JK; Lien CC
    J Neurosci; 2014 Jan; 34(4):1344-57. PubMed ID: 24453325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations.
    Poo C; Isaacson JS
    Neuron; 2009 Jun; 62(6):850-61. PubMed ID: 19555653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.