These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 20696402)

  • 1. Structural basis of interprotofilament interaction and lateral deformation of microtubules.
    Sui H; Downing KH
    Structure; 2010 Aug; 18(8):1022-31. PubMed ID: 20696402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural analysis of the interaction between ncd tail and tubulin protofilaments.
    Wendt T; Karabay A; Krebs A; Gross H; Walker R; Hoenger A
    J Mol Biol; 2003 Oct; 333(3):541-52. PubMed ID: 14556743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin.
    Chrétien D; Flyvbjerg H; Fuller SD
    Eur Biophys J; 1998; 27(5):490-500. PubMed ID: 9760730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules.
    Mitra A; Sept D
    Biophys J; 2008 Oct; 95(7):3252-8. PubMed ID: 18621813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electron microscopy journey in the study of microtubule structure and dynamics.
    Nogales E
    Protein Sci; 2015 Dec; 24(12):1912-9. PubMed ID: 26401895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules switch occasionally into unfavorable configurations during elongation.
    Chrétien D; Fuller SD
    J Mol Biol; 2000 May; 298(4):663-76. PubMed ID: 10788328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors.
    Downing KH; Nogales E
    Methods Enzymol; 2010; 483():121-42. PubMed ID: 20888472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly.
    Wang HW; Nogales E
    Nature; 2005 Jun; 435(7044):911-5. PubMed ID: 15959508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of microtubule interprotofilament interactions by modified taxanes.
    Matesanz R; Rodríguez-Salarichs J; Pera B; Canales A; Andreu JM; Jiménez-Barbero J; Bras W; Nogales A; Fang WS; Díaz JF
    Biophys J; 2011 Dec; 101(12):2970-80. PubMed ID: 22208196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct visualization of the microtubule lattice seam both in vitro and in vivo.
    Kikkawa M; Ishikawa T; Nakata T; Wakabayashi T; Hirokawa N
    J Cell Biol; 1994 Dec; 127(6 Pt 2):1965-71. PubMed ID: 7806574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule structure at improved resolution.
    Meurer-Grob P; Kasparian J; Wade RH
    Biochemistry; 2001 Jul; 40(27):8000-8. PubMed ID: 11434769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An atomistic view of microtubule stabilization by GTP.
    Quiniou E; Guichard P; Perahia D; Marco S; Mouawad L
    Structure; 2013 May; 21(5):833-43. PubMed ID: 23623730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and asymmetric fluctuations in the microtubule wall captured by high-resolution cryoelectron microscopy.
    Debs GE; Cha M; Liu X; Huehn AR; Sindelar CV
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16976-16984. PubMed ID: 32636254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex formation with kinesin motor domains affects the structure of microtubules.
    Krebs A; Goldie KN; Hoenger A
    J Mol Biol; 2004 Jan; 335(1):139-53. PubMed ID: 14659746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microtubule mechanics on hydrolysis and catastrophes.
    Müller N; Kierfeld J
    Phys Biol; 2014 Aug; 11(4):046001. PubMed ID: 24896176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes.
    Detrich HW; Parker SK; Williams RC; Nogales E; Downing KH
    J Biol Chem; 2000 Nov; 275(47):37038-47. PubMed ID: 10956651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules.
    Andreu JM; Bordas J; Diaz JF; García de Ancos J; Gil R; Medrano FJ; Nogales E; Pantos E; Towns-Andrews E
    J Mol Biol; 1992 Jul; 226(1):169-84. PubMed ID: 1352357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new protocol to accurately determine microtubule lattice seam location.
    Zhang R; Nogales E
    J Struct Biol; 2015 Nov; 192(2):245-54. PubMed ID: 26424086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of individual tubulin dimers binding to growing microtubules.
    Mickolajczyk KJ; Geyer EA; Kim T; Rice LM; Hancock WO
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7314-7322. PubMed ID: 30804205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryo-EM structure of VASH1-SVBP bound to microtubules.
    Li F; Li Y; Ye X; Gao H; Shi Z; Luo X; Rice LM; Yu H
    Elife; 2020 Aug; 9():. PubMed ID: 32773040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.