These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 20696413)
1. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. Sealy MP; Guo YB J Mech Behav Biomed Mater; 2010 Oct; 3(7):488-96. PubMed ID: 20696413 [TBL] [Abstract][Full Text] [Related]
2. Surface integrity of biodegradable Magnesium-Calcium orthopedic implant by burnishing. Salahshoor M; Guo YB J Mech Behav Biomed Mater; 2011 Nov; 4(8):1888-904. PubMed ID: 22098888 [TBL] [Abstract][Full Text] [Related]
3. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application. Xiong Y; Hu Q; Song R; Hu X Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1299-1304. PubMed ID: 28415419 [TBL] [Abstract][Full Text] [Related]
4. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD). Mhaede M; Pastorek F; Hadzima B Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():330-5. PubMed ID: 24863232 [TBL] [Abstract][Full Text] [Related]
5. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing. Salahshoor M; Li C; Liu ZY; Fang XY; Guo YB J Mech Behav Biomed Mater; 2018 Feb; 78():246-253. PubMed ID: 29179040 [TBL] [Abstract][Full Text] [Related]
6. Enabling High-Performance Surfaces of Biodegradable Magnesium Alloys via Femtosecond Laser Shock Peening with Ultralow Pulse Energy. Wang W; Hung CY; Howe L; Chen J; Wang K; Ho VX; Lenahan S; Murayama M; Vinh NQ; Cai W ACS Appl Bio Mater; 2021 Nov; 4(11):7903-7912. PubMed ID: 35006771 [TBL] [Abstract][Full Text] [Related]
7. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850 [TBL] [Abstract][Full Text] [Related]
8. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Wang HX; Guan SK; Wang X; Ren CX; Wang LG Acta Biomater; 2010 May; 6(5):1743-8. PubMed ID: 20004746 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance. Salahshoor M; Guo Y Materials (Basel); 2012 Jan; 5(1):135-155. PubMed ID: 28817036 [TBL] [Abstract][Full Text] [Related]
10. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
11. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. Drynda A; Hassel T; Hoehn R; Perz A; Bach FW; Peuster M J Biomed Mater Res A; 2010 May; 93(2):763-75. PubMed ID: 19653306 [TBL] [Abstract][Full Text] [Related]
12. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel-titanium alloy. Zhang R; Mankoci S; Walters N; Gao H; Zhang H; Hou X; Qin H; Ren Z; Zhou X; Doll GL; Martini A; Sahai N; Dong Y; Ye C J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1854-1863. PubMed ID: 30550636 [TBL] [Abstract][Full Text] [Related]
13. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling. Seong JW; Kim WJ Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310 [TBL] [Abstract][Full Text] [Related]
14. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Kannan MB; Raman RK Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Kamrani S; Fleck C Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451 [TBL] [Abstract][Full Text] [Related]
16. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Shadanbaz S; Dias GJ Acta Biomater; 2012 Jan; 8(1):20-30. PubMed ID: 22040686 [TBL] [Abstract][Full Text] [Related]
17. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Li Z; Gu X; Lou S; Zheng Y Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191 [TBL] [Abstract][Full Text] [Related]
18. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents. Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607 [TBL] [Abstract][Full Text] [Related]
19. Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties. Balog M; Ibrahim AMH; Krizik P; Bajana O; Klimova A; Catic A; Schauperl Z J Mech Behav Biomed Mater; 2019 Feb; 90():45-53. PubMed ID: 30343170 [TBL] [Abstract][Full Text] [Related]
20. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. Gray-Munro JE; Seguin C; Strong M J Biomed Mater Res A; 2009 Oct; 91(1):221-30. PubMed ID: 18814220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]