These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 20696415)

  • 1. Improved fatigue life of acrylic bone cements reinforced with zirconia fibers.
    Kane RJ; Yue W; Mason JJ; Roeder RK
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):504-11. PubMed ID: 20696415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement.
    Zhou Y; Yue W; Li C; Mason JJ
    J Mater Sci Mater Med; 2009 Feb; 20(2):633-41. PubMed ID: 18936882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization and cytocompatibility of linoleic acid modified bone cement for percutaneous cement discoplasty.
    Ghandour S; Hong L; Aramesh M; Persson C
    J Mech Behav Biomed Mater; 2024 Oct; 158():106662. PubMed ID: 39096682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.
    Kotha SP; Li C; McGinn P; Schmid SR; Mason JJ
    J Mater Sci Mater Med; 2006 Dec; 17(12):1403-9. PubMed ID: 17143773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow characteristics of curing polymethyl methacrylate bone cement.
    Dunne NJ; Orr JF
    Proc Inst Mech Eng H; 1998; 212(3):199-207. PubMed ID: 9695639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of zirconia nanoparticles at the metal stem-bone cement interface in implant loosening of total hip replacements.
    Schunck A; Kronz A; Fischer C; Buchhorn GH
    Acta Biomater; 2016 Feb; 31():412-424. PubMed ID: 26612414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial properties of self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1998; 43(2):153-61. PubMed ID: 9619433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.
    Kotha SP; Li C; McGinn P; Schmid SR; Mason JJ
    J Mater Sci Mater Med; 2006 Aug; 17(8):743-8. PubMed ID: 16897167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture toughness of steel-fiber-reinforced bone cement.
    Kotha SP; Li C; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2004 Sep; 70(3):514-21. PubMed ID: 15293326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two novel high performing composite PMMA-CaP cements for vertebroplasty: An ex vivo animal study.
    Aghyarian S; Hu X; Lieberman IH; Kosmopoulos V; Kim HK; Rodrigues DC
    J Mech Behav Biomed Mater; 2015 Oct; 50():290-8. PubMed ID: 26177392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticulate fillers improve the mechanical strength of bone cement.
    Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A
    Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.