These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20696597)

  • 1. Alternative methods of normalising EMG during cycling.
    Albertus-Kajee Y; Tucker R; Derman W; Lambert M
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1036-43. PubMed ID: 20696597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative methods of normalising EMG during running.
    Albertus-Kajee Y; Tucker R; Derman W; Lamberts RP; Lambert MI
    J Electromyogr Kinesiol; 2011 Aug; 21(4):579-86. PubMed ID: 21531148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maximal isokinetic pedalling exercise for EMG normalization in cycling.
    Fernández-Peña E; Lucertini F; Ditroilo M
    J Electromyogr Kinesiol; 2009 Jun; 19(3):e162-70. PubMed ID: 18207420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjustment of muscle coordination during an all-out sprint cycling task.
    Dorel S; Guilhem G; Couturier A; Hug F
    Med Sci Sports Exerc; 2012 Nov; 44(11):2154-64. PubMed ID: 22677928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG activity does not change during a time trial in competitive cyclists.
    Duc S; Betik AC; Grappe F
    Int J Sports Med; 2005 Mar; 26(2):145-50. PubMed ID: 15726491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of traditional and task specific reference tasks to assess peak muscle activation during two different sprint cycling tests.
    Kordi M; Folland J; Goodall S; Barratt P; Howatson G
    J Electromyogr Kinesiol; 2019 Jun; 46():41-48. PubMed ID: 30921650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns.
    Giacomoni M; Billaut F; Falgairette G
    Int J Sports Med; 2006 Jun; 27(6):468-74. PubMed ID: 16586326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of power output during dynamic cycling.
    Abbiss CR; Levin G; McGuigan MR; Laursen PB
    Int J Sports Med; 2008 Jul; 29(7):574-8. PubMed ID: 18050055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of electromyographic variables during incremental and fatiguing cycling.
    Macdonald JH; Farina D; Marcora SM
    Med Sci Sports Exerc; 2008 Feb; 40(2):335-44. PubMed ID: 18202567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG normalization to study muscle activation in cycling.
    Rouffet DM; Hautier CA
    J Electromyogr Kinesiol; 2008 Oct; 18(5):866-78. PubMed ID: 17507240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-session repeatability of lower limb muscles activation pattern during pedaling.
    Dorel S; Couturier A; Hug F
    J Electromyogr Kinesiol; 2008 Oct; 18(5):857-65. PubMed ID: 17449281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of EMG measurements for trunk muscles during maximal and sub-maximal voluntary isometric contractions in healthy controls and CLBP patients.
    Dankaerts W; O'Sullivan PB; Burnett AF; Straker LM; Danneels LA
    J Electromyogr Kinesiol; 2004 Jun; 14(3):333-42. PubMed ID: 15094147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of high-intensity intermittent cycling sprints on neuromuscular activity.
    Billaut F; Basset FA; Giacomoni M; Lemaître F; Tricot V; Falgairette G
    Int J Sports Med; 2006 Jan; 27(1):25-30. PubMed ID: 16388438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG amplitude in maximal and submaximal exercise is dependent on signal capture rate.
    Hunter AM; St Clair Gibson A; Lambert M; Dennis S; Mullany H; O'Malley MJ; Vaughan CL; Kay D; Noakes TD
    Int J Sports Med; 2003 Feb; 24(2):83-9. PubMed ID: 12669251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise.
    Candotti CT; Loss JF; Melo Mde O; La Torre M; Pasini M; Dutra LA; de Oliveira JL; de Oliveira LP
    Can J Physiol Pharmacol; 2008 May; 86(5):272-8. PubMed ID: 18432288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why does power output decrease at high pedaling rates during sprint cycling?
    Samozino P; Horvais N; Hintzy F
    Med Sci Sports Exerc; 2007 Apr; 39(4):680-7. PubMed ID: 17414806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electromyography fatigue threshold in lower limb muscles in trained cyclists and untrained non-cyclists.
    Smirmaul BP; Dantas JL; Fontes EB; Altimari LR; Okano AH; Moraes AC
    Electromyogr Clin Neurophysiol; 2010; 50(3-4):149-54. PubMed ID: 20552949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists.
    Creer AR; Ricard MD; Conlee RK; Hoyt GL; Parcell AC
    Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central fatigue after cycling evaluated using peripheral magnetic stimulation.
    Kremenic IJ; Glace BW; Ben-Avi SS; Nicholas SJ; McHugh MP
    Med Sci Sports Exerc; 2009 Jul; 41(7):1461-6. PubMed ID: 19516154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of a 6-s maximal cycling sprint test.
    Mendez-Villanueva A; Bishop D; Hamer P
    J Sci Med Sport; 2007 Oct; 10(5):323-6. PubMed ID: 16949868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.