These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 20696786)

  • 21. Experiment studies on sweating for exercise prescription: total body sweat rate in relation to work load in physically trained adult males.
    Araki T; Inoue M; Fujiwara H
    J Hum Ergol (Tokyo); 1979 Dec; 8(2):91-9. PubMed ID: 555477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of aerobic fitness on hypohydration-induced physiological strain and exercise impairment.
    Merry TL; Ainslie PN; Cotter JD
    Acta Physiol (Oxf); 2010 Feb; 198(2):179-90. PubMed ID: 19807723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of central versus sweat gland mechanisms to the seasonal change of sweating function in young sedentary males and females.
    Taniguchi Y; Sugenoya J; Nishimura N; Iwase S; Matsumoto T; Shimizu Y; Inukai Y; Sato M
    Int J Biometeorol; 2011 Mar; 55(2):203-12. PubMed ID: 20532572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heat acclimation--mechanisms of adaptation to exercise in the heat.
    Nielsen B
    Int J Sports Med; 1998 Jun; 19 Suppl 2():S154-6. PubMed ID: 9694425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Function of human eccrine sweat glands during dynamic exercise and passive heat stress.
    Kondo N; Shibasaki M; Aoki K; Koga S; Inoue Y; Crandall CG
    J Appl Physiol (1985); 2001 May; 90(5):1877-81. PubMed ID: 11299281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian variation of sweating responses to passive heat stress.
    Aoki K; Kondo N; Shibasaki M; Takano S; Tominaga H; Katsuura T
    Acta Physiol Scand; 1997 Nov; 161(3):397-402. PubMed ID: 9401593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sweating responses and the muscle metaboreflex under mildly hyperthermic conditions in sprinters and distance runners.
    Amano T; Ichinose M; Koga S; Inoue Y; Nishiyasu T; Kondo N
    J Appl Physiol (1985); 2011 Aug; 111(2):524-9. PubMed ID: 21659489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capacity of young males and females for running in desert heat.
    Dill DB; Soholt LF; McLean DC; Drost TF; Loughran MT
    Med Sci Sports; 1977; 9(3):137-42. PubMed ID: 593074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Sweating response to abrupt changes in work load].
    Miyagawa T; Ogawa T; Asayama M; Yamashita Y
    Nihon Seirigaku Zasshi; 1985; 47(1):17-24. PubMed ID: 3999048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of potentiation in sweating induced by long-term physical training.
    Yamazaki F; Fujii N; Sone R; Ikegami H
    Eur J Appl Physiol Occup Physiol; 1994; 69(3):228-32. PubMed ID: 8001534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss.
    Gagnon D; Kenny GP
    J Appl Physiol (1985); 2012 Sep; 113(5):746-57. PubMed ID: 22797311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of short-term aerobic training and high aerobic power on tolerance to uncompensable heat stress.
    Cheung SS; McLellan TM
    Aviat Space Environ Med; 1999 Jul; 70(7):637-43. PubMed ID: 10416998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.
    Poirier MP; Gagnon D; Kenny GP
    Appl Physiol Nutr Metab; 2016 Aug; 41(8):816-24. PubMed ID: 27467216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of dynamics of sweating in men during exercise.
    Grucza R; Hänninen O
    Acta Physiol Pol; 1990; 41(7):65-75. PubMed ID: 2136319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Run performance of middle-aged and young adult runners in the heat.
    de Paula Viveiros J; Amorim FT; Alves MN; Passos RL; Meyer F
    Int J Sports Med; 2012 Mar; 33(3):211-7. PubMed ID: 22161295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms underlying the age-related decrement in the human sweating response.
    Inoue Y; Shibasaki M; Ueda H; Ishizashi H
    Eur J Appl Physiol Occup Physiol; 1999 Jan; 79(2):121-6. PubMed ID: 10029332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sex-related differences in sweat gland cholinergic sensitivity exist irrespective of differences in aerobic capacity.
    Madeira LG; da Fonseca MA; Fonseca IA; de Oliveira KP; Passos RL; Machado-Moreira CA; Rodrigues LO
    Eur J Appl Physiol; 2010 May; 109(1):93-100. PubMed ID: 19902243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impairments in local heat loss in type 1 diabetes during exercise in the heat.
    Carter MR; McGinn R; Barrera-Ramirez J; Sigal RJ; Kenny GP
    Med Sci Sports Exerc; 2014 Dec; 46(12):2224-33. PubMed ID: 24784146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of dew-point hygrometry, direct sweat collection, and measurement of body water losses to determine sweating rates in exercising horses.
    Kingston JK; Geor RJ; McCutcheon LJ
    Am J Vet Res; 1997 Feb; 58(2):175-81. PubMed ID: 9028485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate.
    Morris NB; Cramer MN; Hodder SG; Havenith G; Jay O
    J Appl Physiol (1985); 2013 Mar; 114(6):816-23. PubMed ID: 23305986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.