These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20696926)

  • 1. Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-beta aggregates.
    Singh SM; Kongari N; Cabello-Villegas J; Mallela KM
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15069-74. PubMed ID: 20696926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation.
    Henderson DM; Lee A; Ervasti JM
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9632-7. PubMed ID: 20457930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function.
    Singh SM; Bandi S; Shah DD; Armstrong G; Mallela KM
    PLoS One; 2014; 9(10):e110439. PubMed ID: 25340340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin.
    Singh SM; Molas JF; Kongari N; Bandi S; Armstrong GS; Winder SJ; Mallela KM
    Proteins; 2012 May; 80(5):1377-92. PubMed ID: 22275054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-amino Acid Mutation Encountered in Duchenne Muscular Dystrophy Decreases Stability of the Rod Domain 23 (R23) Spectrin-like Repeat of Dystrophin.
    Legardinier S; Legrand B; Raguénès-Nicol C; Bondon A; Hardy S; Tascon C; Le Rumeur E; Hubert JF
    J Biol Chem; 2009 Mar; 284(13):8822-32. PubMed ID: 19158079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexibility in the N-terminal actin-binding domain: clues from in silico mutations and molecular dynamics.
    Chakravarty D; Chakraborti S; Chakrabarti P
    Proteins; 2015 Apr; 83(4):696-710. PubMed ID: 25620004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy.
    Norwood FL; Sutherland-Smith AJ; Keep NH; Kendrick-Jones J
    Structure; 2000 May; 8(5):481-91. PubMed ID: 10801490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N-terminal actin-binding tandem calponin-homology (CH) domain of dystrophin is in a closed conformation in solution and when bound to F-actin.
    Singh SM; Mallela KM
    Biophys J; 2012 Nov; 103(9):1970-8. PubMed ID: 23199925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.
    McCourt JL; Talsness DM; Lindsay A; Arpke RW; Chatterton PD; Nelson DM; Chamberlain CM; Olthoff JT; Belanto JJ; McCourt PM; Kyba M; Lowe DA; Ervasti JM
    Hum Mol Genet; 2018 Feb; 27(3):451-462. PubMed ID: 29194514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N- and C-Terminal Domains Differentially Contribute to the Structure and Function of Dystrophin and Utrophin Tandem Calponin-Homology Domains.
    Singh SM; Bandi S; Mallela KM
    Biochemistry; 2015 Nov; 54(46):6942-50. PubMed ID: 26516677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ZZ domain of dystrophin in DMD: making sense of missense mutations.
    Vulin A; Wein N; Strandjord DM; Johnson EK; Findlay AR; Maiti B; Howard MT; Kaminoh YJ; Taylor LE; Simmons TR; Ray WC; Montanaro F; Ervasti JM; Flanigan KM
    Hum Mutat; 2014 Feb; 35(2):257-64. PubMed ID: 24302611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the delta-sarcoglycan gene are a rare cause of autosomal recessive limb-girdle muscular dystrophy (LGMD2).
    Duggan DJ; Manchester D; Stears KP; Mathews DJ; Hart C; Hoffman EP
    Neurogenetics; 1997 May; 1(1):49-58. PubMed ID: 10735275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dystrophin missense mutations alter focal adhesion tension and mechanotransduction.
    Ramirez MP; Anderson MJM; Kelly MD; Sundby LJ; Hagerty AR; Wenthe SJ; Odde DJ; Ervasti JM; Gordon WR
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2205536119. PubMed ID: 35700360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of the dystrophin rod domain fold: evidence for nested repeating units.
    Calvert R; Kahana E; Gratzer WB
    Biophys J; 1996 Sep; 71(3):1605-10. PubMed ID: 8874034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein.
    Ameziane-Le Hir S; Paboeuf G; Tascon C; Hubert JF; Le Rumeur E; Vié V; Raguénès-Nicol C
    Biochemistry; 2016 Jul; 55(29):4018-26. PubMed ID: 27367833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy.
    Arahata K; Beggs AH; Honda H; Ito S; Ishiura S; Tsukahara T; Ishiguro T; Eguchi C; Orimo S; Arikawa E
    J Neurol Sci; 1991 Feb; 101(2):148-56. PubMed ID: 2033400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin.
    Legardinier S; Raguénès-Nicol C; Tascon C; Rocher C; Hardy S; Hubert JF; Le Rumeur E
    J Mol Biol; 2009 Jun; 389(3):546-58. PubMed ID: 19379759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexafluoroacetone hydrate as a structure modifier in proteins: characterization of a molten globule state of hen egg-white lysozyme.
    Bhattacharjya S; Balaram P
    Protein Sci; 1997 May; 6(5):1065-73. PubMed ID: 9144778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparison of actin binding in utrophin and dystrophin.
    Keep NH
    Neurol Sci; 2000; 21(5 Suppl):S929-37. PubMed ID: 11382192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy.
    Lindgren M; Sörgjerd K; Hammarström P
    Biophys J; 2005 Jun; 88(6):4200-12. PubMed ID: 15764666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.