These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20696937)

  • 1. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse.
    Vandenbroucke TR; Armstrong HA; Williams M; Paris F; Zalasiewicz JA; Sabbe K; Nõlvak J; Challands TJ; Verniers J; Servais T
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):14983-6. PubMed ID: 20696937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation.
    Montañez IP; Tabor NJ; Niemeier D; Dimichele WA; Frank TD; Fielding CR; Isbell JL; Birgenheier LP; Rygel MC
    Science; 2007 Jan; 315(5808):87-91. PubMed ID: 17204648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thresholds for Cenozoic bipolar glaciation.
    Deconto RM; Pollard D; Wilson PA; Pälike H; Lear CH; Pagani M
    Nature; 2008 Oct; 455(7213):652-6. PubMed ID: 18833277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.
    Jaccard SL; Galbraith ED; Martínez-García A; Anderson RF
    Nature; 2016 Feb; 530(7589):207-10. PubMed ID: 26840491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual modes of the carbon cycle since the Last Glacial Maximum.
    Smith HJ; Fischer H; Wahlen M; Mastroianni D; Deck B
    Nature; 1999 Jul; 400(6741):248-50. PubMed ID: 11536907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration of the subtropical front as a modulator of glacial climate.
    Bard E; Rickaby RE
    Nature; 2009 Jul; 460(7253):380-3. PubMed ID: 19606147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of global temperature over the past two million years.
    Snyder CW
    Nature; 2016 Oct; 538(7624):226-228. PubMed ID: 27669024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.
    Martínez-Botí MA; Marino G; Foster GL; Ziveri P; Henehan MJ; Rae JW; Mortyn PG; Vance D
    Nature; 2015 Feb; 518(7538):219-22. PubMed ID: 25673416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels.
    Lunt DJ; Foster GL; Haywood AM; Stone EJ
    Nature; 2008 Aug; 454(7208):1102-5. PubMed ID: 18756254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polar ocean and glacial cycles in atmospheric CO(2) concentration.
    Sigman DM; Hain MP; Haug GH
    Nature; 2010 Jul; 466(7302):47-55. PubMed ID: 20596012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.
    Pound MJ; Salzmann U
    Sci Rep; 2017 Feb; 7():43386. PubMed ID: 28233862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical insolation-CO2 relation for diagnosing past and future glacial inception.
    Ganopolski A; Winkelmann R; Schellnhuber HJ
    Nature; 2016 Jan; 529(7585):200-3. PubMed ID: 26762457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton.
    Crampton JS; Cooper RA; Sadler PM; Foote M
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1498-503. PubMed ID: 26811471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for atmospheric CO2 in preindustrial climate forcing.
    van Hoof TB; Wagner-Cremer F; Kürschner WM; Visscher H
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15815-8. PubMed ID: 18838689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The magnitude and duration of Late Ordovician-Early Silurian glaciation.
    Finnegan S; Bergmann K; Eiler JM; Jones DS; Fike DA; Eisenman I; Hughes NC; Tripati AK; Fischer WW
    Science; 2011 Feb; 331(6019):903-6. PubMed ID: 21273448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-Pleistocene transition in glacial cycles explained by declining CO
    Willeit M; Ganopolski A; Calov R; Brovkin V
    Sci Adv; 2019 Apr; 5(4):eaav7337. PubMed ID: 30949580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2.
    Maher BA; Dennis PF
    Nature; 2001 May; 411(6834):176-80. PubMed ID: 11346790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing atmospheric CO2 during the Plio-Pleistocene transition by fossil Typha.
    Bai YJ; Chen LQ; Ranhotra PS; Wang Q; Wang YF; Li CS
    Glob Chang Biol; 2015 Feb; 21(2):874-81. PubMed ID: 24990109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.