These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20697461)

  • 21. The electrodynamics of rod-like microparticles based on optically induced dielectrophoresis.
    Shi L; Zhong X; Wu T; Bian Q; Liu X; Miao H; Deng Y; Yin B; Zhou T
    Electrophoresis; 2022 Nov; 43(21-22):2175-2183. PubMed ID: 36209396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical Dielectrophoretic (DEP) Manipulation of Oil-Immersed Aqueous Droplets on a Plasmonic-Enhanced Photoconductive Surface.
    Thio SK; Park SY
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow.
    Zhao K; Peng R; Li D
    Nanoscale; 2016 Dec; 8(45):18945-18955. PubMed ID: 27775139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors affecting particle collection by electro-osmosis in microfluidic systems.
    Mohtar MN; Hoettges KF; Hughes MP
    Electrophoresis; 2014 Feb; 35(2-3):345-51. PubMed ID: 24132700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical studies of manipulation and separation of microparticles in ODEP-based microfluidic chips.
    Zhao K; Yao J; Wei Y; Kong D; Wang J
    Electrophoresis; 2024 Feb; ():. PubMed ID: 38419136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable Droplet Manipulation and Characterization by ac-DEP.
    Zhao K; Li D
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36572-36581. PubMed ID: 30264985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Floating electrode dielectrophoresis.
    Golan S; Elata D; Orenstein M; Dinnar U
    Electrophoresis; 2006 Dec; 27(24):4919-26. PubMed ID: 17117384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy.
    Cheng IF; Chen TY; Lu RJ; Wu HW
    Nanoscale Res Lett; 2014; 9(1):324. PubMed ID: 25024685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode.
    Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H
    Analyst; 2019 Aug; 144(17):5150-5163. PubMed ID: 31342972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on non-bioparticles and
    Chen Q; Cao Z; Yuan YJ
    RSC Adv; 2020 Jan; 10(5):2598-2614. PubMed ID: 35496126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dielectrophoretic manipulation of finite sized species and the importance of the quadrupolar contribution.
    Liang E; Smith RL; Clague DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066617. PubMed ID: 15697536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dielectrophoresis-field flow fractionation for separation of particles: A critical review.
    Waheed W; Sharaf OZ; Alazzam A; Abu-Nada E
    J Chromatogr A; 2021 Jan; 1637():461799. PubMed ID: 33385744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes.
    Lewpiriyawong N; Yang C
    Biomicrofluidics; 2012 Mar; 6(1):12807-128079. PubMed ID: 22662074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optoelectrofluidic platforms for chemistry and biology.
    Hwang H; Park JK
    Lab Chip; 2011 Jan; 11(1):33-47. PubMed ID: 20944856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter.
    Lewpiriyawong N; Yang C
    Electrophoresis; 2014 Mar; 35(5):714-20. PubMed ID: 24338796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical Investigation of DC Dielectrophoretic Deformable Particle⁻Particle Interactions and Assembly.
    Ji X; Xu L; Zhou T; Shi L; Deng Y; Li J
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.