These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20697582)

  • 21. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity-Towards Spectral Characteristics and Strain Sensing Technology.
    Wang Q; Yan D; Cui B; Guo Z
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical fiber surface waveguide with Fabry-Perot cavity for sensing.
    Chen Q; Wang DN; Feng G; Wang QH; Niu YD
    Opt Lett; 2020 Nov; 45(22):6186-6189. PubMed ID: 33186946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5x10
    Pevec S; Donlagic D
    Opt Express; 2018 Sep; 26(18):23868-23882. PubMed ID: 30184882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-fiber Fabry-Perot refractometer assisted by a long-period grating.
    Mosquera L; Sáez-Rodriguez D; Cruz JL; Andrés MV
    Opt Lett; 2010 Feb; 35(4):613-5. PubMed ID: 20160835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.
    Liao CR; Hu TY; Wang DN
    Opt Express; 2012 Sep; 20(20):22813-8. PubMed ID: 23037431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation into fabrication and optical characteristics of tunable optofluidic microlenses using two-photon polymerization.
    Wang Z; Wu Y; Yu W; Qi D; Bakhtiyari AN; Zheng H
    Opt Express; 2024 Feb; 32(5):7448-7462. PubMed ID: 38439424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity-controllable refractive index sensor based on reflective θ-shaped microfiber resonator cooperated with Vernier effect.
    Xu Z; Luo Y; Liu D; Shum PP; Sun Q
    Sci Rep; 2017 Aug; 7(1):9620. PubMed ID: 28852073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity.
    Tang J; Qiu G; Zhang X; Wang J
    Lab Chip; 2021 Sep; 21(19):3784-3792. PubMed ID: 34581391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator.
    Zhu JM; Shi Y; Zhu XQ; Yang Y; Jiang FH; Sun CJ; Zhao WH; Han XT
    Lab Chip; 2017 Nov; 17(23):4025-4030. PubMed ID: 29090721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optofluidic gradient refractive index resonators using liquid diffusion for tunable unidirectional emission.
    Liu HL; Zuo YF; Zhu XQ; Yang Y
    Lab Chip; 2020 Aug; 20(15):2656-2662. PubMed ID: 32578645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of coupled-resonator optical waveguide (CROW) based refractive index sensors using pixelized spatial detection at a single wavelength.
    Lei T; Poon AW
    Opt Express; 2011 Oct; 19(22):22227-41. PubMed ID: 22109065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional high-speed and long-range tomography and profilometry using liquid-crystal Fabry-Perot resonator.
    Banh TQ; Suzuki K; Kimura M; Shioda T
    Appl Opt; 2015 Feb; 54(4):912-8. PubMed ID: 25967805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.
    Xia J; Wang F; Luo H; Wang Q; Xiong S
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-consistency fiber-optic Fabry-Perot sensor based on MEMS for simultaneous temperature and liquid refractive index measurement.
    Wang S; Wu W; Sang M; Jiang J; Liu K; Wang X; Yu X; Liu T
    Appl Opt; 2020 Oct; 59(30):9353-9358. PubMed ID: 33104651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
    Zhong Y; Yu H; Wen Y; Zhou P; Guo H; Zou W; Lv X; Liu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11994-12004. PubMed ID: 36655899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabry-Perot Cavity Control for Tunable Raman Scattering.
    Kim T; Lee J; Yu ES; Lee S; Woo H; Kwak J; Chung S; Choi I; Ryu YS
    Small; 2023 Jul; 19(29):e2207003. PubMed ID: 37017491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer.
    Deng M; Tang CP; Zhu T; Rao YJ; Xu LC; Han M
    Appl Opt; 2010 Mar; 49(9):1593-8. PubMed ID: 20300155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature.
    Pevec S; Donlagic D
    Appl Opt; 2012 Jul; 51(19):4536-41. PubMed ID: 22772127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A versatile tunable microcavity for investigation of light-matter interaction.
    Mochalov KE; Vaskan IS; Dovzhenko DS; Rakovich YP; Nabiev I
    Rev Sci Instrum; 2018 May; 89(5):053105. PubMed ID: 29864833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.