These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20697651)

  • 1. Converting carbon nanofibers to carbon nanoneedles: catalyst splitting and reverse motion.
    Yun J; Wang R; Hong MH; Thong JT; Foo YL; Thompson CV; Choi WK
    Nanoscale; 2010 Oct; 2(10):2180-5. PubMed ID: 20697651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile "scratching" method with common metal objects to generate large-scale catalyst patterns used for growth of single-walled carbon nanotubes.
    Cao X; Li B; Huang Y; Boey F; Yu T; Shen Z; Zhang H
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1873-7. PubMed ID: 20355809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes.
    El Mel AA; Achour A; Xu W; Choi CH; Gautron E; Angleraud B; Granier A; Le Brizoual L; Djouadi MA; Tessier PY
    Nanotechnology; 2011 Oct; 22(43):435302. PubMed ID: 21971265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to evaluate the tensile strength and stress-strain relationship of carbon nanofibers, carbon nanotubes, and C-chains.
    Márquez-Lucero A; Gomez JA; Caudillo R; Miki-Yoshida M; José-Yacaman M
    Small; 2005 Jun; 1(6):640-4. PubMed ID: 17193500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube patterning with capillary micromolding of catalyst.
    Lee J; Ryu C; Lee S; Jung D; Kim H; Chae H
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4174-9. PubMed ID: 18047145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and structure of carbon nanotube Y-junctions.
    Li WZ; Pandey B; Liu YQ
    J Phys Chem B; 2006 Nov; 110(47):23694-700. PubMed ID: 17125329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni/SiO2 promoted growth of carbon nanofibers from chlorobenzene: characterization of the active metal sites.
    Keane MA; Jacobs G; Patterson PM
    J Colloid Interface Sci; 2006 Oct; 302(2):576-88. PubMed ID: 16860817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.
    Cojocaru CS; Senger A; Le Normand F
    J Nanosci Nanotechnol; 2006 May; 6(5):1331-8. PubMed ID: 16792361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method.
    Liu Q; Ren W; Chen ZG; Wang DW; Liu B; Yu B; Li F; Cong H; Cheng HM
    ACS Nano; 2008 Aug; 2(8):1722-8. PubMed ID: 19206377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas sensing with Au-decorated carbon nanotubes.
    Zanolli Z; Leghrib R; Felten A; Pireaux JJ; Llobet E; Charlier JC
    ACS Nano; 2011 Jun; 5(6):4592-9. PubMed ID: 21553864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area synthesis of carbon nanofibres at room temperature.
    Boskovic BO; Stolojan V; Khan RU; Haq S; Silva SR
    Nat Mater; 2002 Nov; 1(3):165-8. PubMed ID: 12618804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition.
    Bachmatiuk A; Börrnert F; Grobosch M; Schäffel F; Wolff U; Scott A; Zaka M; Warner JH; Klingeler R; Knupfer M; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):4098-104. PubMed ID: 19908851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic properties and morphology of individual carbon nanofibers.
    Lawrence JG; Berhan LM; Nadarajah A
    ACS Nano; 2008 Jun; 2(6):1230-6. PubMed ID: 19206341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode.
    Rakhi RB; Sethupathi K; Ramaprabhu S
    J Phys Chem B; 2009 Mar; 113(10):3190-4. PubMed ID: 19260716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.