These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20697717)

  • 1. Current trends and future prospects of biotechnological interventions through tissue culture in apple.
    Bhatti S; Jha G
    Plant Cell Rep; 2010 Nov; 29(11):1215-25. PubMed ID: 20697717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro tissue culture of apple and other Malus species: recent advances and applications.
    Teixeira da Silva JA; Gulyás A; Magyar-Tábori K; Wang MR; Wang QC; Dobránszki J
    Planta; 2019 Apr; 249(4):975-1006. PubMed ID: 30788577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropropagation of apple--a review.
    Dobránszki J; da Silva JA
    Biotechnol Adv; 2010; 28(4):462-88. PubMed ID: 20188809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of a cisgenic apple plant.
    Vanblaere T; Szankowski I; Schaart J; Schouten H; Flachowsky H; Broggini GA; Gessler C
    J Biotechnol; 2011 Jul; 154(4):304-11. PubMed ID: 21663775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apple (Malus x domestica).
    Dandekar AM; Teo G; Uratsu SL; Tricoli D
    Methods Mol Biol; 2006; 344():253-61. PubMed ID: 17033068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights.
    Li Z; Chen Q; Xin Y; Mei Z; Gao A; Liu W; Yu L; Chen X; Chen Z; Wang N
    BMC Plant Biol; 2021 Oct; 21(1):483. PubMed ID: 34686132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryobiotechnology of apple (Malus spp.): development, progress and future prospects.
    Wang MR; Chen L; Teixeira da Silva JA; Volk GM; Wang QC
    Plant Cell Rep; 2018 May; 37(5):689-709. PubMed ID: 29327217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cisgenic Rvi6 scab-resistant apple lines show no differences in Rvi6 transcription when compared with conventionally bred cultivars.
    Chizzali C; Gusberti M; Schouten HJ; Gessler C; Broggini GA
    Planta; 2016 Mar; 243(3):635-44. PubMed ID: 26586177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of cisgenic lines of apple 'Gala' carrying the Rvi6 scab resistance gene.
    Vanblaere T; Flachowsky H; Gessler C; Broggini GA
    Plant Biotechnol J; 2014 Jan; 12(1):2-9. PubMed ID: 23998808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue culture-mediated biotechnological intervention in pomegranate: a review.
    Naik SK; Chand PK
    Plant Cell Rep; 2011 May; 30(5):707-21. PubMed ID: 21161233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RAPD analysis of long term micropropagated rootstock plants of Apple Malling 7.
    Modgil M; Parmar S; Negi NP
    Indian J Exp Biol; 2017 Mar; 55(3):178-83. PubMed ID: 30184419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hairy root culture as a valuable tool for allelopathic studies in apple.
    Stanišić M; Ćosić T; Savić J; Krstić-Milošević D; Mišić D; Smigocki A; Ninković S; Banjac N
    Tree Physiol; 2019 May; 39(5):888-905. PubMed ID: 30811532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.
    Kumar P; Srivastava DK
    Biotechnol Lett; 2016 Apr; 38(4):561-71. PubMed ID: 26721234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight.
    Flachowsky H; Szankowski I; Fischer TC; Richter K; Peil A; Höfer M; Dörschel C; Schmoock S; Gau AE; Halbwirth H; Hanke MV
    Planta; 2010 Feb; 231(3):623-35. PubMed ID: 19967387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is genetically modified crop the answer for the next green revolution?
    Basu SK; Dutta M; Goyal A; Bhowmik PK; Kumar J; Nandy S; Scagliusi SM; Prasad R
    GM Crops; 2010; 1(2):68-79. PubMed ID: 21865874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).
    Herzog K; Flachowsky H; Deising HB; Hanke MV
    Gene; 2012 Apr; 498(1):41-9. PubMed ID: 22349025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks.
    Mehta M; Ram R; Bhattacharya A
    Indian J Exp Biol; 2014 Jul; 52(7):748-54. PubMed ID: 25059043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apple (Malus domestica L. Borkh.) allergen Mal d 1: effect of cultivar, cultivation system, and storage conditions.
    Matthes A; Schmitz-Eiberger M
    J Agric Food Chem; 2009 Nov; 57(22):10548-53. PubMed ID: 19845340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.).
    Mimida N; Kotoda N; Ueda T; Igarashi M; Hatsuyama Y; Iwanami H; Moriya S; Abe K
    Plant Cell Physiol; 2009 Feb; 50(2):394-412. PubMed ID: 19168455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes.
    Espley RV; Bovy A; Bava C; Jaeger SR; Tomes S; Norling C; Crawford J; Rowan D; McGhie TK; Brendolise C; Putterill J; Schouten HJ; Hellens RP; Allan AC
    Plant Biotechnol J; 2013 May; 11(4):408-19. PubMed ID: 23130849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.