BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20698265)

  • 1. [Removal of bisphenol A and tetrabromobisphenol A membrane by nanofiltration from water source].
    Zhang Y; Hu JY; Li GZ; Causserand C; Aimar P
    Huan Jing Ke Xue; 2010 Jun; 31(6):1513-7. PubMed ID: 20698265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of bisphenol A by a nanofiltration membrane in view of drinking water production.
    Zhang Y; Causserand C; Aimar P; Cravedi JP
    Water Res; 2006 Dec; 40(20):3793-9. PubMed ID: 17074381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Removal of EDCs(BPA) by ultrafiltration and impact factors].
    Wang L; Dong BZ; Gao NY
    Huan Jing Ke Xue; 2007 Feb; 28(2):329-34. PubMed ID: 17489192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples.
    Yin YM; Chen YP; Wang XF; Liu Y; Liu HL; Xie MX
    J Chromatogr A; 2012 Jan; 1220():7-13. PubMed ID: 22197256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Impact of organic matter in water on the adsorption of EDCS (BPA) onto granular activated carbon (GAC) from the view of molecular weight distribution].
    Li RY; Gao NY; Xu B; Zen WH; Zhao JF; Le LS
    Huan Jing Ke Xue; 2006 Dec; 27(12):2488-94. PubMed ID: 17304846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.
    Muhamad MS; Salim MR; Lau WJ; Hadibarata T; Yusop Z
    Environ Technol; 2016 Aug; 37(15):1959-69. PubMed ID: 26729509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the adsorption of endocrine disruptor compounds on typical filter materials using a quartz crystal microbalance.
    Guo JX; Pan J; Wang J; Wang F; Shi HX
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20499-20509. PubMed ID: 31102210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: Bisphenol A and Tetrabromobisphenol A.
    Liu S; Wu P; Chen M; Yu L; Kang C; Zhu N; Dang Z
    Environ Pollut; 2017 Sep; 228():277-286. PubMed ID: 28551558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The selective binding character of a molecular imprinted particle for Bisphenol A from water.
    Ren YM; Yang J; Ma WQ; Ma J; Feng J; Liu XL
    Water Res; 2014 Mar; 50():90-100. PubMed ID: 24361706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies.
    Mohammadi AA; Dehghani MH; Mesdaghinia A; Yaghmaian K; Es'haghi Z
    Int J Biol Macromol; 2020 Jul; 155():1019-1029. PubMed ID: 31715227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A.
    Yang B; Ying GG; Chen ZF; Zhao JL; Peng FQ; Chen XW
    Water Res; 2014 Oct; 62():211-9. PubMed ID: 24956603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influencing factors and kinetics of oxidation of bisphenol A in water with sodium hypochlorite].
    Wang XJ; Gao NY; Sun XF; Xu B
    Huan Jing Ke Xue; 2007 Nov; 28(11):2544-9. PubMed ID: 18290480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes.
    Han J; Meng S; Dong Y; Hu J; Gao W
    Water Res; 2013 Jan; 47(1):197-208. PubMed ID: 23127621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.
    Li H; Zhao H; Liu C; Li Y; Cao H; Zhang Y
    Chemosphere; 2013 Aug; 92(10):1294-300. PubMed ID: 23732003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a hollow porous molecularly imprinted polymer using tetrabromobisphenol A as a dummy template and its application as SPE sorbent for determination of bisphenol A in tap water.
    Li J; Zhang X; Liu Y; Tong H; Xu Y; Liu S
    Talanta; 2013 Dec; 117():281-7. PubMed ID: 24209342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of nanoscale zerovalent iron-based magnetic and thermal dual-responsive composite materials for the removal and detection of phenols.
    Li J; Zhou Q; Wu Y; Yuan Y; Liu Y
    Chemosphere; 2018 Mar; 195():472-482. PubMed ID: 29274993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon.
    Kazner C; Lehnberg K; Kovalova L; Wintgens T; Melin T; Hollender J; Dott W
    Water Sci Technol; 2008; 58(8):1699-706. PubMed ID: 19001728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of endocrine disruptors using homogeneous metal catalyst combined with nanofiltration membrane.
    Kim JH; Kwon H; Lee S; Lee CH
    Water Sci Technol; 2005; 51(6-7):381-90. PubMed ID: 16004000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: Combined with batch sorption and fixed-bed column studies.
    Lu L; Chen B
    Environ Pollut; 2018 Dec; 243(Pt B):1539-1549. PubMed ID: 30293037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.