BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20698265)

  • 21. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review.
    Bhatnagar A; Anastopoulos I
    Chemosphere; 2017 Feb; 168():885-902. PubMed ID: 27839878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of 17α-ethinylestradiol and bisphenol A adsorption on anthracite surfaces by site energy distribution.
    He J; Guo J; Zhou Q; Yang J; Fang F; Huang Y
    Chemosphere; 2019 Feb; 216():59-68. PubMed ID: 30359917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid removal of bisphenol A on highly ordered mesoporous carbon.
    Sui Q; Huang J; Liu Y; Chang X; Ji G; Deng S; Xie T; Yu G
    J Environ Sci (China); 2011; 23(2):177-82. PubMed ID: 21516989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water.
    Catherine HN; Ou MH; Manu B; Shih YH
    Sci Total Environ; 2018 Sep; 635():629-638. PubMed ID: 29679835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption and desorption behaviors of selected endocrine disrupting chemicals in simulated gastrointestinal fluids.
    Fei YH; Leung KM; Li XY
    Mar Pollut Bull; 2014 Aug; 85(2):363-9. PubMed ID: 24533996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Emergent treatment of source water contaminated by representative chemicals].
    Chen BB; Gao NY; Lu WM; Shang YB; Qin ZQ
    Huan Jing Ke Xue; 2009 Jun; 30(6):1632-8. PubMed ID: 19662842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-based composite with γ-Fe2O3 nanoparticle for the high-performance removal of endocrine-disrupting compounds from water.
    Sinha A; Jana NR
    Chem Asian J; 2013 Apr; 8(4):786-91. PubMed ID: 23401314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.
    Ma M; Crump D; Farmahin R; Kennedy SW
    Environ Toxicol Chem; 2015 Feb; 34(2):391-401. PubMed ID: 25470364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of phenolic endocrine disruptors by Portulaca oleracea.
    Imai S; Shiraishi A; Gamo K; Watanabe I; Okuhata H; Miyasaka H; Ikeda K; Bamba T; Hirata K
    J Biosci Bioeng; 2007 May; 103(5):420-6. PubMed ID: 17609156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions.
    Luo S; Yang SG; Sun C; Wang XD
    Water Res; 2011 Feb; 45(4):1519-28. PubMed ID: 21190709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of bisphenol A in water by the heterogeneous photo-Fenton.
    Jiang C; Xu Z; Guo Q; Zhuo Q
    Environ Technol; 2014; 35(5-8):966-72. PubMed ID: 24645480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structured carbon foam derived from waste biomass: application to endocrine disruptor adsorption.
    Zbair M; Ojala S; Khallok H; Ainassaari K; El Assal Z; Hatim Z; Keiski RL; Bensitel M; Brahmi R
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32589-32599. PubMed ID: 31630351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption and hysteresis of bisphenol A and 17alpha-ethinyl estradiol on carbon nanomaterials.
    Pan B; Lin D; Mashayekhi H; Xing B
    Environ Sci Technol; 2008 Aug; 42(15):5480-5. PubMed ID: 18754464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative assessment of three ligninolytic fungi for removal of phenolic endocrine disruptors from freshwaters and sediments.
    Loffredo E; Castellana G; Traversa A; Senesi N
    Environ Technol; 2013; 34(9-12):1601-8. PubMed ID: 24191495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Degradation of BPA in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation].
    Li C; Gao NY; Zhang KJ
    Huan Jing Ke Xue; 2009 Mar; 30(3):771-4. PubMed ID: 19432326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-modified mesoporous silicas as recyclable adsorbents of an endocrine disrupter, bisphenol A.
    Yamaguchi A; Awano T; Oyaizu K; Yuasa M
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1689-94. PubMed ID: 17025072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of micropollutants and NOM in carbon nanotube-UF membrane system from seawater.
    Heo J; Joseph L; Yoon Y; Park YG; Her N; Sohn J; Yoon SH
    Water Sci Technol; 2011; 63(11):2737-44. PubMed ID: 22049773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerobic degradation of bisphenol-A and its derivatives in river sediment.
    Chang BV; Liu JH; Liao CS
    Environ Technol; 2014; 35(1-4):416-24. PubMed ID: 24600882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al).
    Zhou M; Wu YN; Qiao J; Zhang J; McDonald A; Li G; Li F
    J Colloid Interface Sci; 2013 Sep; 405():157-63. PubMed ID: 23764233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced removal of aqueous BPA model compounds using Metalloligs.
    Franz DM; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):307-12. PubMed ID: 24279622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.