BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20698561)

  • 1. Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification.
    Garibay SJ; Wang Z; Cohen SM
    Inorg Chem; 2010 Sep; 49(17):8086-91. PubMed ID: 20698561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks.
    Garibay SJ; Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Aug; 48(15):7341-9. PubMed ID: 19580256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification.
    Wittmann T; Siegel R; Reimer N; Milius W; Stock N; Senker J
    Chemistry; 2015 Jan; 21(1):314-23. PubMed ID: 25352494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: syntheses, characterization, sorption, and breathing behavior.
    Biswas S; Ahnfeldt T; Stock N
    Inorg Chem; 2011 Oct; 50(19):9518-26. PubMed ID: 21899293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification.
    Nguyen JG; Cohen SM
    J Am Chem Soc; 2010 Apr; 132(13):4560-1. PubMed ID: 20232871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization.
    Hendon CH; Tiana D; Fontecave M; Sanchez C; D'arras L; Sassoye C; Rozes L; Mellot-Draznieks C; Walsh A
    J Am Chem Soc; 2013 Jul; 135(30):10942-5. PubMed ID: 23841821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteropolyacid-functionalized aluminum 2-aminoterephthalate metal-organic frameworks as reactive aldehyde sorbents and catalysts.
    Bromberg L; Su X; Hatton TA
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5468-77. PubMed ID: 23673368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions.
    Zhou YX; Chen YZ; Hu Y; Huang G; Yu SH; Jiang HL
    Chemistry; 2014 Nov; 20(46):14976-80. PubMed ID: 25291973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkenyl/thiol-derived metal-organic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption.
    Liu T; Che JX; Hu YZ; Dong XW; Liu XY; Che CM
    Chemistry; 2014 Oct; 20(43):14090-5. PubMed ID: 25210002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynthetic modification of metal-organic frameworks--a progress report.
    Tanabe KK; Cohen SM
    Chem Soc Rev; 2011 Feb; 40(2):498-519. PubMed ID: 21103601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101: synthesis, characterization and catalytic properties.
    Zalomaeva OV; Kovalenko KA; Chesalov YA; Mel'gunov MS; Zaikovskii VI; Kaichev VV; Sorokin AB; Kholdeeva OA; Fedin VP
    Dalton Trans; 2011 Feb; 40(7):1441-4. PubMed ID: 21221448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.
    Tanabe KK; Wang Z; Cohen SM
    J Am Chem Soc; 2008 Jul; 130(26):8508-17. PubMed ID: 18540671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides.
    Liang J; Chen RP; Wang XY; Liu TT; Wang XS; Huang YB; Cao R
    Chem Sci; 2017 Feb; 8(2):1570-1575. PubMed ID: 28451286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction.
    Wang H; Yuan X; Wu Y; Zeng G; Chen X; Leng L; Wu Z; Jiang L; Li H
    J Hazard Mater; 2015 Apr; 286():187-94. PubMed ID: 25585267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-organic frameworks of vanadium as catalysts for conversion of methane to acetic acid.
    Phan A; Czaja AU; Gándara F; Knobler CB; Yaghi OM
    Inorg Chem; 2011 Aug; 50(16):7388-90. PubMed ID: 21766786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic frameworks as hosts for photochromic guest molecules.
    Hermann D; Emerich H; Lepski R; Schaniel D; Ruschewitz U
    Inorg Chem; 2013 Mar; 52(5):2744-9. PubMed ID: 23409796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study.
    Hintz H; Wuttke S
    Chem Commun (Camb); 2014 Oct; 50(78):11472-5. PubMed ID: 24941925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives.
    Oudi S; Oveisi AR; Daliran S; Khajeh M; Teymoori E
    J Colloid Interface Sci; 2020 Mar; 561():782-792. PubMed ID: 31761467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.