These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20698615)

  • 1. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion.
    Beard MC; Midgett AG; Hanna MC; Luther JM; Hughes BK; Nozik AJ
    Nano Lett; 2010 Aug; 10(8):3019-27. PubMed ID: 20698615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Exciton Generation in Semiconductor Quantum Dots.
    Beard MC
    J Phys Chem Lett; 2011 Jun; 2(11):1282-8. PubMed ID: 26295422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot exciton cooling and multiple exciton generation in PbSe quantum dots.
    Kumar M; Vezzoli S; Wang Z; Chaudhary V; Ramanujan RV; Gurzadyan GG; Bruno A; Soci C
    Phys Chem Chem Phys; 2016 Nov; 18(45):31107-31114. PubMed ID: 27812574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple exciton generation and dissociation in PbS quantum dot-electron acceptor complexes.
    Yang Y; Rodríguez-Córdoba W; Lian T
    Nano Lett; 2012 Aug; 12(8):4235-41. PubMed ID: 22757981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbS(x)Se(1-x) alloyed quantum dots.
    Midgett AG; Luther JM; Stewart JT; Smith DK; Padilha LA; Klimov VI; Nozik AJ; Beard MC
    Nano Lett; 2013 Jul; 13(7):3078-85. PubMed ID: 23750998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere.
    Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC
    Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.
    Cunningham PD; Boercker JE; Foos EE; Lumb MP; Smith AR; Tischler JG; Melinger JS
    Nano Lett; 2011 Aug; 11(8):3476-81. PubMed ID: 21766838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier Multiplication in Quantum Dots within the Framework of Two Competing Energy Relaxation Mechanisms.
    Stewart JT; Padilha LA; Bae WK; Koh WK; Pietryga JM; Klimov VI
    J Phys Chem Lett; 2013 Jun; 4(12):2061-8. PubMed ID: 26283253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple exciton generation in films of electronically coupled PbSe quantum dots.
    Luther JM; Beard MC; Song Q; Law M; Ellingson RJ; Nozik AJ
    Nano Lett; 2007 Jun; 7(6):1779-84. PubMed ID: 17530913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.
    Ellingson RJ; Beard MC; Johnson JC; Yu P; Micic OI; Nozik AJ; Shabaev A; Efros AL
    Nano Lett; 2005 May; 5(5):865-71. PubMed ID: 15884885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots.
    Huang Z; Beard MC
    J Am Chem Soc; 2022 Aug; 144(34):15855-15861. PubMed ID: 35981268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.
    Allan G; Delerue C
    ACS Nano; 2011 Sep; 5(9):7318-23. PubMed ID: 21838302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals.
    Zhu H; Yang Y; Lian T
    Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact ionization can explain carrier multiplication in PbSe quantum dots.
    Franceschetti A; An JM; Zunger A
    Nano Lett; 2006 Oct; 6(10):2191-5. PubMed ID: 17034081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.
    Beard MC; Johnson JC; Luther JM; Nozik AJ
    Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.