These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20698623)

  • 1. Protein--nanoparticle interaction: identification of the ubiquitin--gold nanoparticle interaction site.
    Calzolai L; Franchini F; Gilliland D; Rossi F
    Nano Lett; 2010 Aug; 10(8):3101-5. PubMed ID: 20698623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking of ubiquitin to gold nanoparticles.
    Brancolini G; Kokh DB; Calzolai L; Wade RC; Corni S
    ACS Nano; 2012 Nov; 6(11):9863-78. PubMed ID: 23033917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
    Calzolai L; Gilliland D; Garcìa CP; Rossi F
    J Chromatogr A; 2011 Jul; 1218(27):4234-9. PubMed ID: 21288528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies.
    Jans H; Liu X; Austin L; Maes G; Huo Q
    Anal Chem; 2009 Nov; 81(22):9425-32. PubMed ID: 19803497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces.
    Bortot A; Zanzoni S; D'Onofrio M; Assfalg M
    Chemistry; 2018 Apr; 24(22):5911-5919. PubMed ID: 29446497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study of transient protein-nanoparticle interactions by solution NMR spectroscopy.
    Assfalg M; Ragona L; Pagano K; D'Onofrio M; Zanzoni S; Tomaselli S; Molinari H
    Biochim Biophys Acta Proteins Proteom; 2016 Jan; 1864(1):102-14. PubMed ID: 25936778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent.
    Huang R; Carney RP; Stellacci F; Lau BL
    Nanoscale; 2013 Aug; 5(15):6928-35. PubMed ID: 23787874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the structure and morphology of gold nanoparticle-HSA protein complexes.
    Capomaccio R; Jimenez IO; Colpo P; Gilliland D; Ceccone G; Rossi F; Calzolai L
    Nanoscale; 2015 Nov; 7(42):17653-7. PubMed ID: 26462441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles.
    Tavanti F; Pedone A; Menziani MC
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31331044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different interaction modes of biomolecules with citrate-capped gold nanoparticles.
    Zhang S; Moustafa Y; Huo Q
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21184-92. PubMed ID: 25347206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping protein binding sites on the biomolecular corona of nanoparticles.
    Kelly PM; Åberg C; Polo E; O'Connell A; Cookman J; Fallon J; Krpetić Ž; Dawson KA
    Nat Nanotechnol; 2015 May; 10(5):472-9. PubMed ID: 25822932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles.
    Kaur K; Forrest JA
    Langmuir; 2012 Feb; 28(5):2736-44. PubMed ID: 22132998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric effects of gold nanoparticles on human serum albumin.
    Shao Q; Hall CK
    Nanoscale; 2017 Jan; 9(1):380-390. PubMed ID: 27924337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size.
    Khan S; Gupta A; Verma NC; Nandi CK
    J Chem Phys; 2015 Oct; 143(16):164709. PubMed ID: 26520545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugation of nanoparticles to proteins.
    Aubin-Tam ME
    Methods Mol Biol; 2013; 1025():19-27. PubMed ID: 23918327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientational switching of protein conformation as a function of nanoparticle curvature and their geometrical fitting.
    Khan S; Gupta A; Chaudhary A; Nandi CK
    J Chem Phys; 2014 Aug; 141(8):084707. PubMed ID: 25173030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS).
    James AE; Driskell JD
    Analyst; 2013 Feb; 138(4):1212-8. PubMed ID: 23304695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles.
    Reimers JR; Wang Y; Cankurtaran BO; Ford MJ
    J Am Chem Soc; 2010 Jun; 132(24):8378-84. PubMed ID: 20518461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein interaction analysis by nuclear magnetic resonance spectroscopy.
    Gao G; Williams JG; Campbell SL
    Methods Mol Biol; 2004; 261():79-92. PubMed ID: 15064450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.