BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 20698697)

  • 1. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies.
    Wang J; Tian S; Petros RA; Napier ME; Desimone JM
    J Am Chem Soc; 2010 Aug; 132(32):11306-13. PubMed ID: 20698697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex.
    Kang T; Jiang M; Jiang D; Feng X; Yao J; Song Q; Chen H; Gao X; Chen J
    Mol Pharm; 2015 Aug; 12(8):2947-61. PubMed ID: 26149889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells.
    Nag M; Gajbhiye V; Kesharwani P; Jain NK
    Colloids Surf B Biointerfaces; 2016 Dec; 148():363-370. PubMed ID: 27632697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.).
    Zhang D; Lee HF; Pettit SC; Zaro JL; Huang N; Shen WC
    BMC Biotechnol; 2012 Nov; 12():92. PubMed ID: 23194296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of drug carriers and their interaction with cellular receptors: focus on serum transferrin.
    Luck AN; Mason AB
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1012-9. PubMed ID: 23183585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferrin-mediated cellular iron delivery.
    Luck AN; Mason AB
    Curr Top Membr; 2012; 69():3-35. PubMed ID: 23046645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of 5-hydroxytryptophan into transferrin and its receptor allows assignment of the pH induced changes in intrinsic fluorescence when iron is released.
    James NG; Byrne SL; Mason AB
    Biochim Biophys Acta; 2009 Mar; 1794(3):532-40. PubMed ID: 19103311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic residues of human serum transferrin affect binding to the transferrin receptor and iron release.
    Steere AN; Miller BF; Roberts SE; Byrne SL; Chasteen ND; Smith VC; MacGillivray RT; Mason AB
    Biochemistry; 2012 Jan; 51(2):686-94. PubMed ID: 22191507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy.
    Amreddy N; Muralidharan R; Babu A; Mehta M; Johnson EV; Zhao YD; Munshi A; Ramesh R
    Int J Nanomedicine; 2015; 10():6773-88. PubMed ID: 26604751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH.
    Steere AN; Byrne SL; Chasteen ND; Mason AB
    Biochim Biophys Acta; 2012 Mar; 1820(3):326-33. PubMed ID: 21699959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing and Enhancing Ligand-Mediated Active Targeting of Tumors Using Sub-5 nm Ultrafine Iron Oxide Nanoparticles.
    Xu Y; Wu H; Huang J; Qian W; Martinson DE; Ji B; Li Y; Wang YA; Yang L; Mao H
    Theranostics; 2020; 10(6):2479-2494. PubMed ID: 32194814
    [No Abstract]   [Full Text] [Related]  

  • 12. How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH.
    Eckenroth BE; Steere AN; Chasteen ND; Everse SJ; Mason AB
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13089-94. PubMed ID: 21788477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unique kinetics of iron release from transferrin: the role of receptor, lobe-lobe interactions, and salt at endosomal pH.
    Byrne SL; Chasteen ND; Steere AN; Mason AB
    J Mol Biol; 2010 Feb; 396(1):130-40. PubMed ID: 19917294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells.
    Shen Y; Chen J; Liu Q; Feng C; Gao X; Wang L; Zhang Q; Jiang X
    Int J Pharm; 2011 Jul; 413(1-2):184-93. PubMed ID: 21550388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferrin-Modified Vitamin-E/Lipid Based Polymeric Micelles for Improved Tumor Targeting and Anticancer Effect of Curcumin.
    Muddineti OS; Kumari P; Ghosh B; Biswas S
    Pharm Res; 2018 Mar; 35(5):97. PubMed ID: 29541866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of Transferrin-Conjugated Polysaccharide Nanoparticles in 9L Gliosacoma Cells.
    Jeong YI; Kim YW; Jung S; Pei J; Wen M; Li SY; Ryu HH; Lim JC; Jang WY; Kim IY; Moon KS; Jung TY
    J Nanosci Nanotechnol; 2015 Jan; 15(1):125-9. PubMed ID: 26328315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferrin- and folate-modified, double-targeted nanocarriers for gene delivery.
    Jing F; Li D; Xu W; Liu Y; Wang K; Sui Z
    Pharm Biol; 2014 May; 52(5):570-4. PubMed ID: 24256214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells.
    Guo W; Zheng W; Luo Q; Li X; Zhao Y; Xiong S; Wang F
    Inorg Chem; 2013 May; 52(9):5328-38. PubMed ID: 23586415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol-dihydroartemisinin conjugate.
    Liu K; Dai L; Li C; Liu J; Wang L; Lei J
    Sci Rep; 2016 Jul; 6():29461. PubMed ID: 27377918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fattigation-platform nanoparticles using apo-transferrin stearic acid as a core for receptor-oriented cancer targeting.
    Amin HH; Meghani NM; Park C; Nguyen VH; Tran TT; Tran PH; Lee BJ
    Colloids Surf B Biointerfaces; 2017 Nov; 159():571-579. PubMed ID: 28854413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.