These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 20698699)
1. Direct analysis of donor-acceptor distance and relationship to isotope effects and the force constant for barrier compression in enzymatic H-tunneling reactions. Pudney CR; Johannissen LO; Sutcliffe MJ; Hay S; Scrutton NS J Am Chem Soc; 2010 Aug; 132(32):11329-35. PubMed ID: 20698699 [TBL] [Abstract][Full Text] [Related]
2. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Hay S; Pudney CR; McGrory TA; Pang J; Sutcliffe MJ; Scrutton NS Angew Chem Int Ed Engl; 2009; 48(8):1452-4. PubMed ID: 19145622 [TBL] [Abstract][Full Text] [Related]
3. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. Pudney CR; McGrory T; Lafite P; Pang J; Hay S; Leys D; Sutcliffe MJ; Scrutton NS Chembiochem; 2009 May; 10(8):1379-84. PubMed ID: 19405065 [TBL] [Abstract][Full Text] [Related]
4. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Hay S; Sutcliffe MJ; Scrutton NS Proc Natl Acad Sci U S A; 2007 Jan; 104(2):507-12. PubMed ID: 17202258 [TBL] [Abstract][Full Text] [Related]
5. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase. Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965 [TBL] [Abstract][Full Text] [Related]
6. Understanding Biological Hydrogen Transfer Through the Lens of Temperature Dependent Kinetic Isotope Effects. Klinman JP; Offenbacher AR Acc Chem Res; 2018 Sep; 51(9):1966-1974. PubMed ID: 30152685 [TBL] [Abstract][Full Text] [Related]
7. Solvent as a probe of active site motion and chemistry during the hydrogen tunnelling reaction in morphinone reductase. Hay S; Pudney CR; Sutcliffe MJ; Scrutton NS Chemphyschem; 2008 Sep; 9(13):1875-81. PubMed ID: 18668493 [TBL] [Abstract][Full Text] [Related]
8. Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation. Hu S; Sharma SC; Scouras AD; Soudackov AV; Carr CA; Hammes-Schiffer S; Alber T; Klinman JP J Am Chem Soc; 2014 Jun; 136(23):8157-60. PubMed ID: 24884374 [TBL] [Abstract][Full Text] [Related]
9. How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction? Johannissen LO; Scrutton NS; Sutcliffe MJ Angew Chem Int Ed Engl; 2011 Feb; 50(9):2129-32. PubMed ID: 21344567 [No Abstract] [Full Text] [Related]
10. Replication of the Enzymatic Temperature Dependency of the Primary Hydride Kinetic Isotope Effects in Solution: Caused by the Protein-Controlled Rigidity of the Donor-Acceptor Centers? Lu Y; Wilhelm S; Bai M; Maness P; Ma L Biochemistry; 2019 Oct; 58(39):4035-4046. PubMed ID: 31478638 [TBL] [Abstract][Full Text] [Related]
11. Proton-coupled electron transfer in soybean lipoxygenase: dynamical behavior and temperature dependence of kinetic isotope effects. Hatcher E; Soudackov AV; Hammes-Schiffer S J Am Chem Soc; 2007 Jan; 129(1):187-96. PubMed ID: 17199298 [TBL] [Abstract][Full Text] [Related]
12. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences. Wenger OS Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886 [TBL] [Abstract][Full Text] [Related]
13. Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations. Hay S; Scrutton NS Biochemistry; 2008 Sep; 47(37):9880-7. PubMed ID: 18717597 [TBL] [Abstract][Full Text] [Related]
14. The role of tunneling in enzyme catalysis of C-H activation. Klinman JP Biochim Biophys Acta; 2006 Aug; 1757(8):981-7. PubMed ID: 16546116 [TBL] [Abstract][Full Text] [Related]
15. Mutagenesis of morphinone reductase induces multiple reactive configurations and identifies potential ambiguity in kinetic analysis of enzyme tunneling mechanisms. Pudney CR; Hay S; Pang J; Costello C; Leys D; Sutcliffe MJ; Scrutton NS J Am Chem Soc; 2007 Nov; 129(45):13949-56. PubMed ID: 17939663 [TBL] [Abstract][Full Text] [Related]
16. Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalyzed by flavoproteins. Hardman SJ; Pudney CR; Hay S; Scrutton NS Biophys J; 2013 Dec; 105(11):2549-58. PubMed ID: 24314085 [TBL] [Abstract][Full Text] [Related]
17. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion. Billeter SR; Webb SP; Agarwal PK; Iordanov T; Hammes-Schiffer S J Am Chem Soc; 2001 Nov; 123(45):11262-72. PubMed ID: 11697969 [TBL] [Abstract][Full Text] [Related]
18. A link between protein structure and enzyme catalyzed hydrogen tunneling. Bahnson BJ; Colby TD; Chin JK; Goldstein BM; Klinman JP Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12797-802. PubMed ID: 9371755 [TBL] [Abstract][Full Text] [Related]
19. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. Knapp MJ; Rickert K; Klinman JP J Am Chem Soc; 2002 Apr; 124(15):3865-74. PubMed ID: 11942823 [TBL] [Abstract][Full Text] [Related]
20. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]