These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20699113)

  • 21. Investigation of dry powder aerosolization mechanisms in different channel designs.
    Chen L; Heng RL; Delele MA; Cai J; Du DZ; Opara UL
    Int J Pharm; 2013 Nov; 457(1):143-9. PubMed ID: 24055441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of high efficiency ventilation bag actuated dry powder inhalers.
    Behara SR; Longest PW; Farkas DR; Hindle M
    Int J Pharm; 2014 Apr; 465(1-2):52-62. PubMed ID: 24508552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of design parameters on dry powder inhaler performance.
    Ngoc NT; Chang L; Jia X; Lau R
    Int J Pharm; 2013 Nov; 457(1):92-100. PubMed ID: 24055597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size.
    Coates MS; Chan HK; Fletcher DF; Raper JA
    J Pharm Sci; 2006 Jun; 95(6):1382-92. PubMed ID: 16625656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly reproducible powder aerosolisation for lung delivery using powder-specific electromechanical vibration.
    Crowder TM
    Expert Opin Drug Deliv; 2005 May; 2(3):579-85. PubMed ID: 16296776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do all dry powder inhalers show the same pharmaceutical performance?
    Taylor A; Gustafsson P
    Int J Clin Pract Suppl; 2005 Dec; (149):7-12. PubMed ID: 16279997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orally inhaled drug performance testing for product development, registration, and quality control.
    Lastow O; Svensson M
    J Aerosol Med Pulm Drug Deliv; 2014 Dec; 27(6):401-7. PubMed ID: 25237712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Aerosol therapy].
    Wildhaber JH
    Schweiz Med Wochenschr; 1998 Aug; 128(33):1223-8. PubMed ID: 9757487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Technological and practical challenges of dry powder inhalers and formulations.
    Hoppentocht M; Hagedoorn P; Frijlink HW; de Boer AH
    Adv Drug Deliv Rev; 2014 Aug; 75():18-31. PubMed ID: 24735675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vitro Tests for Aerosol Deposition. IV: Simulating Variations in Human Breath Profiles for Realistic DPI Testing.
    Delvadia RR; Wei X; Longest PW; Venitz J; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):196-206. PubMed ID: 26447531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and performance characteristics of a budesonide powder for inhalation with a novel dry powder inhaler device.
    Fyrnys B; Stang N; Wolf-Heuss E
    Curr Opin Pulm Med; 2001 Apr; 7 Suppl 1():S7-11. PubMed ID: 11385814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of peak inspiratory flow with in-check dial device to simulate low-resistance (Diskus) and high-resistance (Turbohaler) dry powder inhalers in children with asthma.
    Amirav I; Newhouse MT; Mansour Y
    Pediatr Pulmonol; 2005 May; 39(5):447-51. PubMed ID: 15765541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Device Design and Formulation on the In Vitro Comparability for Multi-Unit Dose Dry Powder Inhalers.
    Shur J; Saluja B; Lee S; Tibbatts J; Price R
    AAPS J; 2015 Sep; 17(5):1105-16. PubMed ID: 25956383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols.
    Longest PW; Son YJ; Holbrook L; Hindle M
    Pharm Res; 2013 Jun; 30(6):1608-27. PubMed ID: 23471640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers.
    Fletcher DF; Chaugule V; Gomes Dos Reis L; Young PM; Traini D; Soria J
    Pharm Res; 2021 Feb; 38(2):277-288. PubMed ID: 33575958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of carrier morphology and surface characteristics on the development of respirable PLGA microcapsules for sustained-release pulmonary delivery of insulin.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Int J Pharm; 2010 Apr; 389(1-2):74-85. PubMed ID: 20085803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Air classifier technology (ACT) in dry powder inhalation Part 3. Design and development of an air classifier family for the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):72-80. PubMed ID: 16442248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dry powder inhalers: an overview.
    Atkins PJ
    Respir Care; 2005 Oct; 50(10):1304-12; discussion 1312. PubMed ID: 16185366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery.
    Onoue S; Yamamoto K; Kawabata Y; Hirose M; Mizumoto T; Yamada S
    Int J Pharm; 2009 Dec; 382(1-2):144-50. PubMed ID: 19703531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.