These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20699203)

  • 1. Biometrically modulated collaborative control for an assistive wheelchair.
    Urdiales C; Fernandez-Espejo B; Annicchiaricco R; Sandoval F; Caltagirone C
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):398-408. PubMed ID: 20699203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair collaborative control for disabled users navigating indoors.
    Urdiales C; Fernández-Carmona M; Peula JM; Cortés U; Annichiaricco R; Caltagirone C; Sandoval F
    Artif Intell Med; 2011 Jul; 52(3):177-91. PubMed ID: 21723104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A collaborative wheelchair system.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):161-70. PubMed ID: 18403284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent single switch wheelchair navigation.
    Ka HW; Simpson R; Chung Y
    Disabil Rehabil Assist Technol; 2012 Nov; 7(6):501-6. PubMed ID: 22356240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of the Personal Mobility and Manipulation Appliance (PerMMA).
    Wang H; Xu J; Grindle G; Vazquez J; Salatin B; Kelleher A; Ding D; Collins DM; Cooper RA
    Med Eng Phys; 2013 Nov; 35(11):1613-9. PubMed ID: 23769146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users.
    Zeng Q; Burdet E; Teo CL
    Neurorehabil Neural Repair; 2009 Jun; 23(5):494-504. PubMed ID: 19074687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowing when to assist: developmental issues in lifelong assistive robotics.
    Demiris Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3357-60. PubMed ID: 19964078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain controlled wheelchair to navigate in familiar environments.
    Rebsamen B; Guan C; Zhang H; Wang C; Teo C; Ang MH; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):590-8. PubMed ID: 20460212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a new modality-independent interface for a robotic wheelchair.
    Bastos-Filho TF; Cheein FA; Müller SM; Celeste WC; de la Cruz C; Cavalieri DC; Sarcinelli-Filho M; Amaral PF; Perez E; Soria CM; Carelli R
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):567-84. PubMed ID: 23744700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots.
    Galán F; Nuttin M; Lew E; Ferrez PW; Vanacker G; Philips J; Millán Jdel R
    Clin Neurophysiol; 2008 Sep; 119(9):2159-69. PubMed ID: 18621580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The M3S-based electric wheelchair for the people with disabilities in Taiwan.
    Chen WL; Chen SC; Chen YL; Chen SH; Hsieh JC; Lai JS; Kuo TS
    Disabil Rehabil; 2005 Dec; 27(24):1471-7. PubMed ID: 16421072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wheelchair operation assistance control for a wearable robot using the user's residual function.
    Mizutani N; Watanabe T; Yano K; Aoki T; Nishimoto Y; Kobayashi Y
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650465. PubMed ID: 24187282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an intelligent wheelchair system for users with cerebral palsy.
    Montesano L; Díaz M; Bhaskar S; Minguez J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):193-202. PubMed ID: 20071276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collaborative path planning for a robotic wheelchair.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):315-24. PubMed ID: 19117192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.