These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20699303)

  • 1. Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection.
    McClory SP; Leisring JM; Qin D; Fredrick K
    RNA; 2010 Oct; 16(10):1925-34. PubMed ID: 20699303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functional classes of ram mutations in 16S rRNA.
    McClory SP; Devaraj A; Fredrick K
    RNA; 2014 Apr; 20(4):496-504. PubMed ID: 24572811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reorganization of an intersubunit bridge induced by disparate 16S ribosomal ambiguity mutations mimics an EF-Tu-bound state.
    Fagan CE; Dunkle JA; Maehigashi T; Dang MN; Devaraj A; Miles SJ; Qin D; Fredrick K; Dunham CM
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9716-21. PubMed ID: 23630274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble cryo-EM elucidates the mechanism of translation fidelity.
    Loveland AB; Demo G; Grigorieff N; Korostelev AA
    Nature; 2017 Jun; 546(7656):113-117. PubMed ID: 28538735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epistasis analysis of 16S rRNA ram mutations helps define the conformational dynamics of the ribosome that influence decoding.
    Ying L; Fredrick K
    RNA; 2016 Apr; 22(4):499-505. PubMed ID: 26873598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome.
    Geggier P; Dave R; Feldman MB; Terry DS; Altman RB; Munro JB; Blanchard SC
    J Mol Biol; 2010 Jun; 399(4):576-95. PubMed ID: 20434456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome.
    Cochella L; Brunelle JL; Green R
    Nat Struct Mol Biol; 2007 Jan; 14(1):30-6. PubMed ID: 17159993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    Nat Struct Biol; 2000 Feb; 7(2):104-7. PubMed ID: 10655610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunit-subunit interactions on the 70S ribosome.
    Sun Q; Vila-Sanjurjo A; O'Connor M
    Nucleic Acids Res; 2011 Apr; 39(8):3321-30. PubMed ID: 21138965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in ribosomal protein L19 that decrease the fidelity of translation.
    VanNice J; Gregory ST; Kamath D; O'Connor M
    Biochimie; 2016; 128-129():122-6. PubMed ID: 27477481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection.
    Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of the ribosomal decoding site.
    Noller HF
    Biochimie; 2006 Aug; 88(8):935-41. PubMed ID: 16730404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA.
    Lodmell JS; Dahlberg AE
    Science; 1997 Aug; 277(5330):1262-7. PubMed ID: 9271564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy.
    Valle M; Zavialov A; Li W; Stagg SM; Sengupta J; Nielsen RC; Nissen P; Harvey SC; Ehrenberg M; Frank J
    Nat Struct Biol; 2003 Nov; 10(11):899-906. PubMed ID: 14566331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA.
    Gregory ST; Carr JF; Dahlberg AE
    RNA; 2009 Feb; 15(2):208-14. PubMed ID: 19095621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex.
    Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M
    Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary interactions between helices h13 and h44 in 16S RNA contribute to the fidelity of translation.
    Tran DK; Finley J; Vila-Sanjurjo A; Lale A; Sun Q; O'Connor M
    FEBS J; 2011 Nov; 278(22):4405-12. PubMed ID: 21951637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis.
    Thompson RC; Dix DB; Karim AM
    J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA.
    Barends S; Karzai AW; Sauer RT; Wower J; Kraal B
    J Mol Biol; 2001 Nov; 314(1):9-21. PubMed ID: 11724528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.