These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 20699398)
1. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Chen WW; Yang JL; Qin C; Jin CW; Mo JH; Ye T; Zheng SJ Plant Physiol; 2010 Oct; 154(2):810-9. PubMed ID: 20699398 [TBL] [Abstract][Full Text] [Related]
2. Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants. Lin XY; Ye YQ; Fan SK; Jin CW; Zheng SJ Plant Physiol; 2016 Feb; 170(2):907-20. PubMed ID: 26644507 [TBL] [Abstract][Full Text] [Related]
3. Putrescine Alleviates Iron Deficiency via NO-Dependent Reutilization of Root Cell-Wall Fe in Arabidopsis. Zhu XF; Wang B; Song WF; Zheng SJ; Shen RF Plant Physiol; 2016 Jan; 170(1):558-67. PubMed ID: 26578707 [TBL] [Abstract][Full Text] [Related]
4. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047 [TBL] [Abstract][Full Text] [Related]
5. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. Jin CW; Du ST; Shamsi IH; Luo BF; Lin XY J Exp Bot; 2011 Jul; 62(11):3875-84. PubMed ID: 21511908 [TBL] [Abstract][Full Text] [Related]
6. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Colangelo EP; Guerinot ML Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis. Correa-Aragunde N; Cejudo FJ; Lamattina L Ann Bot; 2015 Sep; 116(4):695-702. PubMed ID: 26229066 [TBL] [Abstract][Full Text] [Related]
8. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Meiser J; Lingam S; Bauer P Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265 [TBL] [Abstract][Full Text] [Related]
9. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. García MJ; Romera FJ; Stacey MG; Stacey G; Villar E; Alcántara E; Pérez-Vicente R Planta; 2013 Jan; 237(1):65-75. PubMed ID: 22983673 [TBL] [Abstract][Full Text] [Related]
10. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses. Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity. Durrett TP; Connolly EL; Rogers EE Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577 [TBL] [Abstract][Full Text] [Related]
12. Auxin Acts Downstream of Ethylene and Nitric Oxide to Regulate Magnesium Deficiency-Induced Root Hair Development in Arabidopsis thaliana. Liu M; Zhang H; Fang X; Zhang Y; Jin C Plant Cell Physiol; 2018 Jul; 59(7):1452-1465. PubMed ID: 29669031 [TBL] [Abstract][Full Text] [Related]
13. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide. Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144 [TBL] [Abstract][Full Text] [Related]
14. WD40-REPEAT 5a represses root meristem growth by suppressing auxin synthesis through changes of nitric oxide accumulation in Arabidopsis. Liu WC; Zheng SQ; Yu ZD; Gao X; Shen R; Lu YT Plant J; 2018 Mar; 93(5):883-893. PubMed ID: 29315929 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Yuan HM; Huang X Plant Cell Environ; 2016 Jan; 39(1):120-35. PubMed ID: 26138870 [TBL] [Abstract][Full Text] [Related]
16. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. Yang JL; Chen WW; Chen LQ; Qin C; Jin CW; Shi YZ; Zheng SJ New Phytol; 2013 Feb; 197(3):815-824. PubMed ID: 23252371 [TBL] [Abstract][Full Text] [Related]
17. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance. Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117 [TBL] [Abstract][Full Text] [Related]
19. Auxin acts upstream of nitric oxide to regulate cell wall xyloglucan and its aluminium-binding capacity in Arabidopsis thaliana. Li S; Sun JY; Wang HY; Jing HK; Shen RF; Zhu XF Planta; 2024 Jan; 259(3):52. PubMed ID: 38289400 [TBL] [Abstract][Full Text] [Related]
20. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2). Niu Y; Jin C; Jin G; Zhou Q; Lin X; Tang C; Zhang Y Plant Cell Environ; 2011 Aug; 34(8):1304-17. PubMed ID: 21477123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]