BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20699487)

  • 1. Fluorescent sensing of colloidal CePO4:Tb nanorods for rapid, ultrasensitive and selective detection of vitamin C.
    Di W; Shirahata N; Zeng H; Sakka Y
    Nanotechnology; 2010 Sep; 21(36):365501. PubMed ID: 20699487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent CePO₄:Tb colloids for H₂O₂ and glucose sensing.
    Lv C; Di W; Liu Z; Zheng K; Qin W
    Analyst; 2014 Sep; 139(18):4547-55. PubMed ID: 25019610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocrystalline CePO(4):Tb as a novel oxygen sensing material on the basis of its redox responsive reversible luminescence.
    Di W; Wang X; Ren X
    Nanotechnology; 2010 Feb; 21(7):75709. PubMed ID: 20090200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and sensitive detection method for Cobalt(II) in water using CePO4:Tb3+ nanocrystals as fluorescent probes.
    Chen H; Yuan F; Xu J; Zhang Y; Wu Y; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():151-5. PubMed ID: 23416919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective detection of Fe2+ by combination of CePO4:Tb3+ nanocrystal-H2O2 hybrid system with synchronous fluorescence scan technique.
    Chen H; Ren J
    Analyst; 2012 Apr; 137(8):1899-903. PubMed ID: 22398695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of chromium(III) in aqueous solution using CePO4 :Tb(3+) nanocrystals in a fluorescence resonance energy transfer system.
    Chen HQ; Wu Y; Zhang YY; Guan YY; Wang L
    Luminescence; 2014 Sep; 29(6):642-8. PubMed ID: 24155180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Selective and Sensitive Detection of Cu(2+) Ions Using Ce(III)/Tb(III)-Doped SrF2 Nanocrystals as Fluorescent Probe.
    Sarkar S; Chatti M; Adusumalli VN; Mahalingam V
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25702-8. PubMed ID: 26529286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and luminescence of CePO4:Tb/LaPO4 core/sheath nanowires.
    Li Y; Sun Z; Ma L; Zhang X; Yao M; Joly AG; Liu Z; Chen W
    Nanotechnology; 2010 Mar; 21(12):125604. PubMed ID: 20203357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of ascorbic acid by indirect fluorimetry].
    Tong CL; Xiang GH; Liu WP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):598-600. PubMed ID: 16097696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly improved green photoluminescence from CePO4:Tb/LaPO4 core/shell nanowires.
    Fang YP; Xu AW; Dong WF
    Small; 2005 Oct; 1(10):967-71. PubMed ID: 17193379
    [No Abstract]   [Full Text] [Related]  

  • 11. Microwave-assisted synthesis of hydrophilic BaYF5:Tb/Ce,Tb green fluorescent colloid nanocrystals.
    Lei Y; Pang M; Fan W; Feng J; Song S; Dang S; Zhang H
    Dalton Trans; 2011 Jan; 40(1):142-5. PubMed ID: 21076744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids.
    Chen YJ; Yan XP
    Small; 2009 Sep; 5(17):2012-8. PubMed ID: 19444852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile sonochemical synthesis and morphology control of CePO₄ nanostructures via an oriented attachment mechanism: application as luminescent probe for selective sensing of Pb²⁺ ion in aqueous solution.
    Shiralizadeh Dezfuli A; Ganjali MR; Norouzi P
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():774-81. PubMed ID: 25063179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CePO4:Tb,Gd hollow nanospheres as peroxidase mimic and magnetic-fluorescent imaging agent.
    Wang W; Jiang X; Chen K
    Chem Commun (Camb); 2012 Jul; 48(54):6839-41. PubMed ID: 22648397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods.
    Gulnar AK; Sudarsan V; Vatsa RK; Sakuntala T; Tyagi AK; Gautam UK; Vinu A
    Nanoscale; 2010 Dec; 2(12):2847-54. PubMed ID: 20938515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence Turn-On Detection of Ascorbic Acid Using a Self-Assembled Lanthanide Polymer Nanoparticle.
    Zeng HH; Liu F; Hu LK; Deng J; Xie YP; Xiao W; Lai PQ; Wang Y; Feng YF; Yu JC
    Appl Spectrosc; 2020 Mar; 74(3):275-284. PubMed ID: 31617379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of luminescent lanthanide phosphate nanorods with cationic "Quat-primer" polymers.
    Komban R; Beckmann R; Rode S; Ichilmann S; Kühnle A; Beginn U; Haase M
    Langmuir; 2011 Aug; 27(16):10174-83. PubMed ID: 21721577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient and biocompatible fluorescence resonance energy transfer system based on lanthanide-doped nanoparticles.
    Di W; Li J; Shirahata N; Sakka Y
    Nanotechnology; 2010 Nov; 21(45):455703. PubMed ID: 20947939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerium phosphate nanotubes: synthesis, characterization and biosensing.
    Meng L; Yang L; Zhou B; Cai C
    Nanotechnology; 2009 Jan; 20(3):035502. PubMed ID: 19417295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch.
    Liu H; Xi P; Xie G; Chen F; Li Z; Bai D; Zeng Z
    J Biol Inorg Chem; 2011 Dec; 16(8):1135-40. PubMed ID: 21769606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.