These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 20699654)
21. c-Jun amino terminal kinase 1 deficient mice are protected from streptozotocin-induced islet injury. Fukuda K; Tesch GH; Nikolic-Paterson DJ Biochem Biophys Res Commun; 2008 Feb; 366(3):710-6. PubMed ID: 18082135 [TBL] [Abstract][Full Text] [Related]
22. Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Chen WB; Gao L; Wang J; Wang YG; Dong Z; Zhao J; Mi QS; Zhou L Oncotarget; 2016 Sep; 7(36):57485-57497. PubMed ID: 27542279 [TBL] [Abstract][Full Text] [Related]
23. The Role of Estrogens in Pancreatic Islet Physiopathology. Mauvais-Jarvis F; Le May C; Tiano JP; Liu S; Kilic-Berkmen G; Kim JH Adv Exp Med Biol; 2017; 1043():385-399. PubMed ID: 29224104 [TBL] [Abstract][Full Text] [Related]
24. The orphan nuclear receptor small heterodimer partner negatively regulates pancreatic beta cell survival and hyperglycemia in multiple low-dose streptozotocin-induced type 1 diabetic mice. Noh JR; Hwang JH; Kim YH; Kim KS; Gang GT; Kim SW; Kim DK; Shong M; Lee IK; Choi HS; Lee CH Int J Biochem Cell Biol; 2013 Aug; 45(8):1538-45. PubMed ID: 23680671 [TBL] [Abstract][Full Text] [Related]
25. Immunohistochemical study of caspase-3-expressing cells within the pancreas of non-obese diabetic mice during cyclophosphamide-accelerated diabetes. Reddy S; Bradley J; Ginn S; Pathipati P; Ross JM Histochem Cell Biol; 2003 Jun; 119(6):451-61. PubMed ID: 12802593 [TBL] [Abstract][Full Text] [Related]
26. Identifying miRNA Signatures Associated with Pancreatic Islet Dysfunction in a FOXA2-Deficient iPSC Model. Elsayed AK; Aldous N; Alajez NM; Abdelalim EM Stem Cell Rev Rep; 2024 Oct; 20(7):1915-1931. PubMed ID: 38916841 [TBL] [Abstract][Full Text] [Related]
27. A general and islet cell-enriched overexpression of IGF-I results in normal islet cell growth, hypoglycemia, and significant resistance to experimental diabetes. Robertson K; Lu Y; De Jesus K; Li B; Su Q; Lund PK; Liu JL Am J Physiol Endocrinol Metab; 2008 May; 294(5):E928-38. PubMed ID: 18270301 [TBL] [Abstract][Full Text] [Related]
28. Macrophages in islet destruction in autoimmune diabetes mellitus. Burkart V; Kolb H Immunobiology; 1996 Oct; 195(4-5):601-13. PubMed ID: 8933160 [No Abstract] [Full Text] [Related]
29. MicroRNAs 106b and 222 Improve Hyperglycemia in a Mouse Model of Insulin-Deficient Diabetes via Pancreatic β-Cell Proliferation. Tsukita S; Yamada T; Takahashi K; Munakata Y; Hosaka S; Takahashi H; Gao J; Shirai Y; Kodama S; Asai Y; Sugisawa T; Chiba Y; Kaneko K; Uno K; Sawada S; Imai J; Katagiri H EBioMedicine; 2017 Feb; 15():163-172. PubMed ID: 27974246 [TBL] [Abstract][Full Text] [Related]
30. Downregulation of apoptosis in the target tissue prevents low-dose streptozotocin-induced autoimmune diabetes. Mensah-Brown EP; Stosic Grujicic S; Maksimovic D; Jasima A; Shahin A; Lukic ML Mol Immunol; 2002 May; 38(12-13):941-6. PubMed ID: 12009572 [TBL] [Abstract][Full Text] [Related]
31. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Meghana K; Sanjeev G; Ramesh B Eur J Pharmacol; 2007 Dec; 577(1-3):183-91. PubMed ID: 17900558 [TBL] [Abstract][Full Text] [Related]
32. Type I diabetes mellitus: a predictable autoimmune disease with interindividual variation in the rate of beta cell destruction. Dotta F; Eisenbarth GS Clin Immunol Immunopathol; 1989 Jan; 50(1 Pt 2):S85-95. PubMed ID: 2642771 [TBL] [Abstract][Full Text] [Related]
33. Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. Hong YJ; Kim N; Lee K; Hee Sonn C; Eun Lee J; Tae Kim S; Ho Baeg I; Lee KM J Ethnopharmacol; 2012 Nov; 144(2):225-33. PubMed ID: 22925946 [TBL] [Abstract][Full Text] [Related]
34. Deletion of STAT-1 pancreatic islets protects against streptozotocin-induced diabetes and early graft failure but not against late rejection. Callewaert HI; Gysemans CA; Ladrière L; D'Hertog W; Hagenbrock J; Overbergh L; Eizirik DL; Mathieu C Diabetes; 2007 Aug; 56(8):2169-73. PubMed ID: 17473223 [TBL] [Abstract][Full Text] [Related]
35. Pancreatic effects of diesel exhaust particles in mice with type 1 diabetes mellitus. Nemmar A; Al-Salam S; Beegam S; Yuvaraju P; Yasin J; Ali BH Cell Physiol Biochem; 2014; 33(2):413-22. PubMed ID: 24556638 [TBL] [Abstract][Full Text] [Related]
36. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Richardson SJ; Rodriguez-Calvo T; Gerling IC; Mathews CE; Kaddis JS; Russell MA; Zeissler M; Leete P; Krogvold L; Dahl-Jørgensen K; von Herrath M; Pugliese A; Atkinson MA; Morgan NG Diabetologia; 2016 Nov; 59(11):2448-2458. PubMed ID: 27506584 [TBL] [Abstract][Full Text] [Related]
37. Effect of CXCL10 receptor antagonist on islet cell apoptosis in a type I diabetes rat model. He J; Lian C; Fang Y; Wu J; Weng J; Ye X; Zhou H Int J Clin Exp Pathol; 2015; 8(11):14542-8. PubMed ID: 26823775 [TBL] [Abstract][Full Text] [Related]
38. Differential expression of islet amyloid polypeptide (amylin) and insulin in experimental diabetes in rodents. Mulder H; Ahrén B; Sundler F Mol Cell Endocrinol; 1995 Oct; 114(1-2):101-9. PubMed ID: 8674834 [TBL] [Abstract][Full Text] [Related]
39. Profiling of RNAs from Human Islet-Derived Exosomes in a Model of Type 1 Diabetes. Krishnan P; Syed F; Jiyun Kang N; Mirmira RG; Evans-Molina C Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775218 [TBL] [Abstract][Full Text] [Related]
40. Fas and Fas ligand immunolocalization in pancreatic islets of NOD mice during spontaneous and cyclophosphamide-accelerated diabetes. Redd S; Ginn S; Ross JM Histochem J; 2002; 34(1-2):1-12. PubMed ID: 12365794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]