These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 20699657)

  • 41. Calcium Signaling-Linked CBF/DREB1 Gene Expression was Induced Depending on the Temperature Fluctuation in the Field: Views from the Natural Condition of Cold Acclimation.
    Hiraki H; Uemura M; Kawamura Y
    Plant Cell Physiol; 2019 Feb; 60(2):303-317. PubMed ID: 30380128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice.
    Man L; Xiang D; Wang L; Zhang W; Wang X; Qi G
    Protoplasma; 2017 Mar; 254(2):945-956. PubMed ID: 27473592
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Kidokoro S; Kim JS; Ishikawa T; Suzuki T; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell; 2020 Apr; 32(4):1035-1048. PubMed ID: 32034036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock.
    Artlip TS; Wisniewski ME; Bassett CL; Norelli JL
    Tree Physiol; 2013 Aug; 33(8):866-77. PubMed ID: 23956128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance.
    Kume S; Kobayashi F; Ishibashi M; Ohno R; Nakamura C; Takumi S
    Genes Genet Syst; 2005 Jun; 80(3):185-97. PubMed ID: 16172531
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The CBFs: three arabidopsis transcription factors to cold acclimate.
    Medina J; Catalá R; Salinas J
    Plant Sci; 2011 Jan; 180(1):3-11. PubMed ID: 21421341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cold response in Phalaenopsis aphrodite and characterization of PaCBF1 and PaICE1.
    Peng PH; Lin CH; Tsai HW; Lin TY
    Plant Cell Physiol; 2014 Sep; 55(9):1623-35. PubMed ID: 24974386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature sensing and cold acclimation.
    Browse J; Xin Z
    Curr Opin Plant Biol; 2001 Jun; 4(3):241-6. PubMed ID: 11312135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana.
    Liu Y; Dang P; Liu L; He C
    Plant Cell Rep; 2019 May; 38(5):511-519. PubMed ID: 30652229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Varying Atmospheric CO
    Barnaby JY; Kim J; Devi MJ; Fleisher DH; Tucker ML; Reddy VR; Sicher RC
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1.
    Jung JH; Lee HJ; Park MJ; Park CM
    Trends Plant Sci; 2014 Aug; 19(8):538-45. PubMed ID: 24768209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
    Gilmour SJ; Sebolt AM; Salazar MP; Everard JD; Thomashow MF
    Plant Physiol; 2000 Dec; 124(4):1854-65. PubMed ID: 11115899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.
    Gilmour SJ; Zarka DG; Stockinger EJ; Salazar MP; Houghton JM; Thomashow MF
    Plant J; 1998 Nov; 16(4):433-42. PubMed ID: 9881163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of Plant Metabolism during Cold Acclimation.
    Fürtauer L; Weiszmann J; Weckwerth W; Nägele T
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis.
    Seo PJ; Kim MJ; Park JY; Kim SY; Jeon J; Lee YH; Kim J; Park CM
    Plant J; 2010 Feb; 61(4):661-71. PubMed ID: 19947982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway.
    Barrero-Gil J; Salinas J
    Adv Exp Med Biol; 2018; 1081():3-22. PubMed ID: 30288701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways.
    Yang W; Liu XD; Chi XJ; Wu CA; Li YZ; Song LL; Liu XM; Wang YF; Wang FW; Zhang C; Liu Y; Zong JM; Li HY
    Planta; 2011 Feb; 233(2):219-29. PubMed ID: 20967459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.
    Hu H; You J; Fang Y; Zhu X; Qi Z; Xiong L
    Plant Mol Biol; 2008 May; 67(1-2):169-81. PubMed ID: 18273684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of DREBs in regulation of abiotic stress responses in plants.
    Lata C; Prasad M
    J Exp Bot; 2011 Oct; 62(14):4731-48. PubMed ID: 21737415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Post-translational activation of CBF for inducing freezing tolerance.
    Kopeć P; Rapacz M; Arora R
    Trends Plant Sci; 2022 May; 27(5):415-417. PubMed ID: 35090818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.