BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20700080)

  • 1. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces.
    Egeland BM; Urbanchek MG; Peramo A; Richardson-Burns SM; Martin DC; Kipke DR; Kuzon WM; Cederna PS
    Plast Reconstr Surg; 2010 Dec; 126(6):1865-1873. PubMed ID: 20700080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological and electrophysiologic effects of poly(3,4-ethylenedioxythiophene) on regenerating peripheral nerve fibers.
    Baghmanli Z; Sugg KB; Wei B; Shim BS; Martin DC; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2013 Aug; 132(2):374-385. PubMed ID: 23897336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode.
    Kung TA; Langhals NB; Martin DC; Johnson PJ; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2014 Jun; 133(6):1380-1394. PubMed ID: 24867721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEDOT electrochemical polymerization improves electrode fidelity and sensitivity.
    Frost CM; Wei B; Baghmanli Z; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2012 Apr; 129(4):933-942. PubMed ID: 22456363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellular biological scaffold polymerized with PEDOT for improving peripheral nerve interface charge transfer.
    Frost CM; Cederna PS; Martin DC; Shim BS; Urbanchek MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():422-5. PubMed ID: 25569986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative peripheral nerve interface free muscle graft mass and function.
    Hu Y; Ursu DC; Sohasky RA; Sando IC; Ambani SLW; French ZP; Mays EA; Nedic A; Moon JD; Kung TA; Cederna PS; Kemp SWP; Urbanchek MG
    Muscle Nerve; 2021 Mar; 63(3):421-429. PubMed ID: 33290586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves.
    Kubiak CA; Svientek SR; Dehdashtian A; Lawera NG; Nadarajan V; Bratley JV; Kung TA; Cederna PS; Kemp SWP
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359056
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb.
    Urbanchek MG; Kung TA; Frost CM; Martin DC; Larkin LM; Wollstein A; Cederna PS
    Biomed Res Int; 2016; 2016():5726730. PubMed ID: 27294122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of muscle-derived signal interference during monopolar needle electromyography of a peripheral nerve interface in the rat hind limb.
    Woo SL; Urbanchek MG; Leach MK; Moon JD; Cederna P; Langhals NB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4382-5. PubMed ID: 25570963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Function and Mechanism of Bone Marrow Mesenchymal Stem Cells-packed Poly (3,4-ethylenedioxythiophene) (PEDOT) Scaffolds for Peripheral Nerve Injury: The Involvement of miR-21-Notch Signaling Pathway.
    Wu W; Zhang S; Chen Y; Liu H
    Curr Neurovasc Res; 2017; 14(1):19-25. PubMed ID: 27890010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface.
    Langhals NB; Woo SL; Moon JD; Larson JV; Leach MK; Cederna PS; Urbanchek MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1989-92. PubMed ID: 25570372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration.
    McKeon-Fischer KD; Browe DP; Olabisi RM; Freeman JW
    J Biomed Mater Res A; 2015 Nov; 103(11):3633-41. PubMed ID: 25855940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjacent regenerative peripheral nerve interfaces produce phase-antagonist signals during voluntary walking in rats.
    Ursu D; Nedic A; Urbanchek M; Cederna P; Gillespie RB
    J Neuroeng Rehabil; 2017 Apr; 14(1):33. PubMed ID: 28438166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat.
    Sando IC; Adidharma W; Nedic A; Ursu DC; Mays EA; Hu Y; Kubiak CA; Sugg KB; Kung TA; Cederna PS; Gerling GJ; Kemp SWP; Urbanchek MG
    Plast Reconstr Surg; 2023 May; 151(5):804e-813e. PubMed ID: 36729137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabosensitive afferent fiber responses after peripheral nerve injury and transplantation of an acellular muscle graft in association with schwann cells.
    Alluin O; Feron F; Desouches C; Dousset E; Pellissier JF; Magalon G; Decherchi P
    J Neurotrauma; 2006 Dec; 23(12):1883-94. PubMed ID: 17184196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic lithium treatment on the peripheral nervous system.
    Faravelli C; Di Bernardo M; Ricca V; Benvenuti P; Bartelli M; Ronchi O
    J Clin Psychiatry; 1999 May; 60(5):306-10. PubMed ID: 10362438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Subclinical lesions of peripheral nervous system in multiple sclerosis patients].
    Pogorzelski R; Baniukiewicz E; Drozdowski W
    Neurol Neurochir Pol; 2004; 38(4):257-64. PubMed ID: 15383952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evoked muscle action potentials from regenerated rat tibial and peroneal nerves: synthetic versus autologous interfascicular grafts.
    Müller H; Shibib K; Friedrich H; Modrack M
    Exp Neurol; 1987 Jan; 95(1):21-33. PubMed ID: 3792478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring conduction velocity distributions in peripheral nerves using neurophysiological techniques.
    Ni Z; Vial F; Avram AV; Leodori G; Pajevic S; Basser PJ; Hallett M
    Clin Neurophysiol; 2020 Jul; 131(7):1581-1588. PubMed ID: 32417700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of nerve conduction and late responses in normal Chinese infants, children, and adults.
    Cai F; Zhang J
    J Child Neurol; 1997 Jan; 12(1):13-8. PubMed ID: 9010790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.