These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 20700080)

  • 1. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces.
    Egeland BM; Urbanchek MG; Peramo A; Richardson-Burns SM; Martin DC; Kipke DR; Kuzon WM; Cederna PS
    Plast Reconstr Surg; 2010 Dec; 126(6):1865-1873. PubMed ID: 20700080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological and electrophysiologic effects of poly(3,4-ethylenedioxythiophene) on regenerating peripheral nerve fibers.
    Baghmanli Z; Sugg KB; Wei B; Shim BS; Martin DC; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2013 Aug; 132(2):374-385. PubMed ID: 23897336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode.
    Kung TA; Langhals NB; Martin DC; Johnson PJ; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2014 Jun; 133(6):1380-1394. PubMed ID: 24867721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEDOT electrochemical polymerization improves electrode fidelity and sensitivity.
    Frost CM; Wei B; Baghmanli Z; Cederna PS; Urbanchek MG
    Plast Reconstr Surg; 2012 Apr; 129(4):933-942. PubMed ID: 22456363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellular biological scaffold polymerized with PEDOT for improving peripheral nerve interface charge transfer.
    Frost CM; Cederna PS; Martin DC; Shim BS; Urbanchek MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():422-5. PubMed ID: 25569986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative peripheral nerve interface free muscle graft mass and function.
    Hu Y; Ursu DC; Sohasky RA; Sando IC; Ambani SLW; French ZP; Mays EA; Nedic A; Moon JD; Kung TA; Cederna PS; Kemp SWP; Urbanchek MG
    Muscle Nerve; 2021 Mar; 63(3):421-429. PubMed ID: 33290586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves.
    Kubiak CA; Svientek SR; Dehdashtian A; Lawera NG; Nadarajan V; Bratley JV; Kung TA; Cederna PS; Kemp SWP
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359056
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a Regenerative Peripheral Nerve Interface for Control of a Neuroprosthetic Limb.
    Urbanchek MG; Kung TA; Frost CM; Martin DC; Larkin LM; Wollstein A; Cederna PS
    Biomed Res Int; 2016; 2016():5726730. PubMed ID: 27294122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of muscle-derived signal interference during monopolar needle electromyography of a peripheral nerve interface in the rat hind limb.
    Woo SL; Urbanchek MG; Leach MK; Moon JD; Cederna P; Langhals NB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4382-5. PubMed ID: 25570963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Function and Mechanism of Bone Marrow Mesenchymal Stem Cells-packed Poly (3,4-ethylenedioxythiophene) (PEDOT) Scaffolds for Peripheral Nerve Injury: The Involvement of miR-21-Notch Signaling Pathway.
    Wu W; Zhang S; Chen Y; Liu H
    Curr Neurovasc Res; 2017; 14(1):19-25. PubMed ID: 27890010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface.
    Langhals NB; Woo SL; Moon JD; Larson JV; Leach MK; Cederna PS; Urbanchek MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1989-92. PubMed ID: 25570372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration.
    McKeon-Fischer KD; Browe DP; Olabisi RM; Freeman JW
    J Biomed Mater Res A; 2015 Nov; 103(11):3633-41. PubMed ID: 25855940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjacent regenerative peripheral nerve interfaces produce phase-antagonist signals during voluntary walking in rats.
    Ursu D; Nedic A; Urbanchek M; Cederna P; Gillespie RB
    J Neuroeng Rehabil; 2017 Apr; 14(1):33. PubMed ID: 28438166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat.
    Sando IC; Adidharma W; Nedic A; Ursu DC; Mays EA; Hu Y; Kubiak CA; Sugg KB; Kung TA; Cederna PS; Gerling GJ; Kemp SWP; Urbanchek MG
    Plast Reconstr Surg; 2023 May; 151(5):804e-813e. PubMed ID: 36729137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabosensitive afferent fiber responses after peripheral nerve injury and transplantation of an acellular muscle graft in association with schwann cells.
    Alluin O; Feron F; Desouches C; Dousset E; Pellissier JF; Magalon G; Decherchi P
    J Neurotrauma; 2006 Dec; 23(12):1883-94. PubMed ID: 17184196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic lithium treatment on the peripheral nervous system.
    Faravelli C; Di Bernardo M; Ricca V; Benvenuti P; Bartelli M; Ronchi O
    J Clin Psychiatry; 1999 May; 60(5):306-10. PubMed ID: 10362438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Subclinical lesions of peripheral nervous system in multiple sclerosis patients].
    Pogorzelski R; Baniukiewicz E; Drozdowski W
    Neurol Neurochir Pol; 2004; 38(4):257-64. PubMed ID: 15383952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evoked muscle action potentials from regenerated rat tibial and peroneal nerves: synthetic versus autologous interfascicular grafts.
    Müller H; Shibib K; Friedrich H; Modrack M
    Exp Neurol; 1987 Jan; 95(1):21-33. PubMed ID: 3792478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring conduction velocity distributions in peripheral nerves using neurophysiological techniques.
    Ni Z; Vial F; Avram AV; Leodori G; Pajevic S; Basser PJ; Hallett M
    Clin Neurophysiol; 2020 Jul; 131(7):1581-1588. PubMed ID: 32417700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of nerve conduction and late responses in normal Chinese infants, children, and adults.
    Cai F; Zhang J
    J Child Neurol; 1997 Jan; 12(1):13-8. PubMed ID: 9010790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.