These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 20700168)
1. Transmission window near 2400 cm(-1): an experimental and modeling study. Roney PL; Reid F; Theriault JM Appl Opt; 1991 May; 30(15):1995-2004. PubMed ID: 20700168 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the FASCODE model and its H(2)O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5-µm region. Thériault JM; Roney PL; -Germain DS; Revercomb HE; Knuteson RO; Smith WL Appl Opt; 1994 Jan; 33(3):323-33. PubMed ID: 20862021 [TBL] [Abstract][Full Text] [Related]
3. Atmospheric transmission in the 2.8-5.5-microm region: description of the Fourier interferometric transmissometer and typical result at low temperatures. Theriault JM; Roney PL; Reid F Appl Opt; 1990 Sep; 29(25):3654-66. PubMed ID: 20567466 [TBL] [Abstract][Full Text] [Related]
4. Infrared water vapor continuum absorption at atmospheric temperatures. Cormier JG; Hodges JT; Drummond JR J Chem Phys; 2005 Mar; 122(11):114309. PubMed ID: 15836217 [TBL] [Abstract][Full Text] [Related]
5. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm(-1) atmospheric windows. Baranov YI; Lafferty WJ Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2578-89. PubMed ID: 22547233 [TBL] [Abstract][Full Text] [Related]
6. Infrared collision-induced absorption by N(2) near 4.3 μm for atmospheric applications: measurements and empirical modeling. Lafferty WJ; Solodov AM; Weber A; Olson WB; Hartmann JM Appl Opt; 1996 Oct; 35(30):5911-7. PubMed ID: 21127602 [TBL] [Abstract][Full Text] [Related]
7. Infrared continuum absorption by atmospheric water vapor in the 8-12-microm window. Roberts RE; Selby JE; Biberman LM Appl Opt; 1976 Sep; 15(9):2085-90. PubMed ID: 20165342 [TBL] [Abstract][Full Text] [Related]
8. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements. Ptashnik IV; McPheat RA; Shine KP; Smith KM; Williams RG Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2557-77. PubMed ID: 22547232 [TBL] [Abstract][Full Text] [Related]
9. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window. Ventrillard I; Romanini D; Mondelain D; Campargue A J Chem Phys; 2015 Oct; 143(13):134304. PubMed ID: 26450311 [TBL] [Abstract][Full Text] [Related]
10. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption. Leforestier C; Tipping RH; Ma Q J Chem Phys; 2010 Apr; 132(16):164302. PubMed ID: 20441270 [TBL] [Abstract][Full Text] [Related]
11. Collision-induced absorption in the fundamental band of N(2): temperature dependence of the absorption for N(2)-N(2) and N(2)-O(2) pairs. Menoux V; Doucen RL; Boulet C; Roblin A; Bouchardy AM Appl Opt; 1993 Jan; 32(3):263-8. PubMed ID: 20802682 [TBL] [Abstract][Full Text] [Related]
12. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range. Tretyakov MY; Krupnov AF; Koshelev MA; Makarov DS; Serov EA; Parshin VV Rev Sci Instrum; 2009 Sep; 80(9):093106. PubMed ID: 19791931 [TBL] [Abstract][Full Text] [Related]
13. Water Vapor Continuum Absorption of Carbon Dioxide Laser Radiation near 10micro. McCoy JH; Rensch DB; Long RK Appl Opt; 1969 Jul; 8(7):1471-8. PubMed ID: 20072456 [TBL] [Abstract][Full Text] [Related]
14. Water vapor absorption coefficients in the 8-13-microm spectral region: a critical review. Grant WB Appl Opt; 1990 Feb; 29(4):451-62. PubMed ID: 20556130 [TBL] [Abstract][Full Text] [Related]
16. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. Ma Q; Tipping RH; Leforestier C J Chem Phys; 2008 Mar; 128(12):124313. PubMed ID: 18376925 [TBL] [Abstract][Full Text] [Related]
17. Measured and predicted atmospheric transmission in the 4.0-5.3-microm region, and the contribution of continuum absorption CO(2) and N(2). Bernstein LS; Robertson DC; Conant JA; Sandford BP Appl Opt; 1979 Jul; 18(14):2454-61. PubMed ID: 20212682 [TBL] [Abstract][Full Text] [Related]
18. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm(-1). Montgomery GP Appl Opt; 1978 Aug; 17(15):2299-303. PubMed ID: 20203777 [TBL] [Abstract][Full Text] [Related]
19. Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon. Conny JM; Norris GA; Gould TR Anal Chim Acta; 2009 Mar; 635(2):144-56. PubMed ID: 19216871 [TBL] [Abstract][Full Text] [Related]
20. Modeling the solubility behavior of CO(2), H(2), and Xe in [C(n)-mim][Tf(2)N] ionic liquids. Andreu JS; Vega LF J Phys Chem B; 2008 Dec; 112(48):15398-406. PubMed ID: 18989904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]