These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20700169)

  • 41. A new eye-safe lidar design for studying atmospheric aerosol distributions.
    Cao N; Zhou X; Li S; Chen Z
    Rev Sci Instrum; 2009 Mar; 80(3):035109. PubMed ID: 19334954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ozone differential absorption lidar algorithm intercomparison.
    Godin S; Carswell AI; Donovan DP; Claude H; Steinbrecht W; McDermid IS; McGee TJ; Gross MR; Nakane H; Swart DP; Bergwerff HB; Uchino O; von der Gathen P; Neuber R
    Appl Opt; 1999 Oct; 38(30):6225-36. PubMed ID: 18324146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region.
    Fix A; Steinebach F; Wirth M; Schäfler A; Ehret G
    Appl Opt; 2019 Aug; 58(22):5892-5900. PubMed ID: 31503903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence lidar multicolor imaging of vegetation.
    Edner H; Johansson J; Svanberg S; Wallinder E
    Appl Opt; 1994 May; 33(13):2471-9. PubMed ID: 20885598
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerosol transport in the California Central Valley observed by airborne lidar.
    De Young RJ; Grant WB; Severance K
    Environ Sci Technol; 2005 Nov; 39(21):8351-7. PubMed ID: 16294873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple field of view lidar returns from atmospheric aerosols.
    Hutt DL; Bissonnette LR; Durand L
    Appl Opt; 1994 Apr; 33(12):2338-48. PubMed ID: 20885584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations.
    Di Girolamo P; Behrendt A; Wulfmeyer V
    Appl Opt; 2006 Apr; 45(11):2474-94. PubMed ID: 16623245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence of atmospheric aerosols and lidar implications.
    Gelbwachs J; Birnbaum M
    Appl Opt; 1973 Oct; 12(10):2442-7. PubMed ID: 20125798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements.
    Takamura T; Sasano Y; Hayasaka T
    Appl Opt; 1994 Oct; 33(30):7132-40. PubMed ID: 20941266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Airborne CO(2) coherent lidar for measurements of atmospheric aerosol and cloud backscatter.
    Menzies RT; Tratt DM
    Appl Opt; 1994 Aug; 33(24):5698-711. PubMed ID: 20935971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer.
    Kolev I; Parvanov O; Kaprielov B
    Appl Opt; 1988 Jun; 27(12):2524-31. PubMed ID: 20531786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mie lidar observations of lower tropospheric aerosols and clouds.
    Veerabuthiran S; Razdan AK; Jindal MK; Dubey DK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):32-6. PubMed ID: 21975046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.
    Sasano Y; Browell EV
    Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ozone and aerosol changes during the 1991-1992 airborne arctic stratospheric expedition.
    Browell EV; Butler CF; Fenn MA; Grant WB; Ismail S; Schoeberl MR; Toon OB; Loewenstein M; Podolske JR
    Science; 1993 Aug; 261(5125):1155-8. PubMed ID: 17790351
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement intercomparison of the JPL and GSFC stratospheric ozone lidar systems.
    McDermid IS; Godin SM; Lindqvist LO; Walsh TD; Burris J; Butler J; Ferrare R; Whiteman D; McGee TJ
    Appl Opt; 1990 Nov; 29(31):4671-6. PubMed ID: 20577450
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.
    Elsayed KA; Chen S; Petway LB; Meadows BL; Marsh WD; Edwards WC; Barnes JC; DeYoung RJ
    Appl Opt; 2002 May; 41(15):2734-9. PubMed ID: 12027160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stratospheric aerosol lidar with a 300 µm diameter superconducting nanowire single-photon detector at 1064 nm.
    Li M; Wu Y; Yuan J; Zhao L; Tang D; Dong J; Xia H; Dou X
    Opt Express; 2023 Jan; 31(2):2768-2779. PubMed ID: 36785283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stratosphere temperature measurement using Raman lidar.
    Keckhut P; Chanin ML; Hauchecorne A
    Appl Opt; 1990 Dec; 29(34):5182-6. PubMed ID: 20577532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dustsonde and lidar measurements of stratospheric aerosols: a comparison.
    Burton Northam G; Rosen JM; Harvey Melfi S; Pepin TJ; McCormick MP; Hofmann DJ; Fuller WH
    Appl Opt; 1974 Oct; 13(10):2416-21. PubMed ID: 20134698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of aerosol absorption with dual-polarization lidar observations.
    Huang Z; Qi S; Zhou T; Dong Q; Ma X; Zhang S; Bi J; Shi J
    Opt Express; 2020 Mar; 28(5):7028-7035. PubMed ID: 32225938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.