These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision. Cheney F; Thibos L; Bradley A Ophthalmic Physiol Opt; 2015 Jan; 35(1):70-80. PubMed ID: 25399925 [TBL] [Abstract][Full Text] [Related]
4. Theory and measurement of ocular chromatic aberration. Thibos LN; Bradley A; Still DL; Zhang X; Howarth PA Vision Res; 1990; 30(1):33-49. PubMed ID: 2321365 [TBL] [Abstract][Full Text] [Related]
5. Calculation of the influence of lateral chromatic aberration on image quality across the visual field. Thibos LN J Opt Soc Am A; 1987 Aug; 4(8):1673-80. PubMed ID: 3625351 [TBL] [Abstract][Full Text] [Related]
6. Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location. Bradley A; Thibos L; Still D Optom Vis Sci; 1990 Nov; 67(11):811-7. PubMed ID: 2250888 [TBL] [Abstract][Full Text] [Related]
7. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. Lombardo M; Lombardo G J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616 [TBL] [Abstract][Full Text] [Related]
8. SLM-based interferometer for assessing the polychromatic neural transfer function of the eye. Suchkov N; Kurian T; Schwarz C; Leube A; Wahl S Biomed Opt Express; 2021 Oct; 12(10):6040-6054. PubMed ID: 34745720 [TBL] [Abstract][Full Text] [Related]
9. Achromatizing the human eye. Bradley A; Zhang XX; Thibos LN Optom Vis Sci; 1991 Aug; 68(8):608-16. PubMed ID: 1923337 [TBL] [Abstract][Full Text] [Related]
10. The visual benefits of correcting longitudinal and transverse chromatic aberration. Roorda A; Cholewiak SA; Bhargava S; Ivzan NH; LaRocca F; Nankivil D; Banks MS J Vis; 2023 Feb; 23(2):3. PubMed ID: 36729421 [TBL] [Abstract][Full Text] [Related]
11. Effect of pupil size on visual acuity in a laboratory model of pseudophakic monovision. Kawamorita T; Uozato H; Handa T; Ito M; Shimizu K J Refract Surg; 2010 May; 26(5):378-80. PubMed ID: 20166628 [TBL] [Abstract][Full Text] [Related]
12. Apparatus for the measurement of retinal visual acuity by moiré fringes. Lotmar W Invest Ophthalmol Vis Sci; 1980 Apr; 19(4):393-400. PubMed ID: 7358490 [TBL] [Abstract][Full Text] [Related]
13. Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration. Zhang X; Thibos LN; Bradley A Optom Vis Sci; 1997 Jul; 74(7):563-9. PubMed ID: 9293526 [TBL] [Abstract][Full Text] [Related]
14. Optical quality of the eye in subjects with normal and excellent visual acuity. Villegas EA; Alcón E; Artal P Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4688-96. PubMed ID: 18552387 [TBL] [Abstract][Full Text] [Related]
15. [Measuring the level of tonic accomodation as a function of wavelength]. Dechriste S; Simonet P J Fr Ophtalmol; 1995; 18(6-7):439-46. PubMed ID: 7560785 [TBL] [Abstract][Full Text] [Related]
16. Adaptive plasticity during the development of colour vision. Wagner HJ; Kröger RH Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347 [TBL] [Abstract][Full Text] [Related]
17. Visual resolution when light enters the eye through different parts of the pupil. Green DG J Physiol; 1967 Jun; 190(3):583-93. PubMed ID: 6051788 [TBL] [Abstract][Full Text] [Related]
18. Effect of myopia on visual acuity measured with laser interference fringes. Coletta NJ; Watson T Vision Res; 2006 Mar; 46(5):636-51. PubMed ID: 16045959 [TBL] [Abstract][Full Text] [Related]
20. Selective broad-band spatial frequency loss in contrast sensitivity functions. Comparison with a model based on optical transfer functions. Bour LJ; Apkarian P Invest Ophthalmol Vis Sci; 1996 Nov; 37(12):2475-84. PubMed ID: 8933764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]