These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20700248)

  • 1. Laser Doppler flowmetry: measurements in a layered perfusion model and Monte Carlo simulations of measurements.
    Jentink HW; Mul FF; Graaff R; Suichies HE; Aarnoudse JG; Greve J
    Appl Opt; 1991 Jun; 30(18):2592-7. PubMed ID: 20700248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations of laser Doppler blood flow measurements in tissue.
    Jentink HW; de Mul FF; Hermsen RG; Graaff R; Greve J
    Appl Opt; 1990 Jun; 29(16):2371-81. PubMed ID: 20563178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler Monte Carlo simulations of light scattering in tissue to support laser-Doppler perfusion measurements.
    de Mul FF; Steenbergen W; Greve J
    Technol Health Care; 1999; 7(2-3):171-83. PubMed ID: 10463306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements.
    Koelink MH; de Mul FF; Greve J; Graaff R; Dassel AC; Aarnoudse JG
    Appl Opt; 1994 Jun; 33(16):3549-58. PubMed ID: 20885742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density.
    Wojtkiewicz S; Liebert A; Rix H; Maniewski R
    Phys Med Biol; 2011 Dec; 56(24):7709-23. PubMed ID: 22085805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue.
    de Mul FF; Koelink MH; Kok ML; Harmsma PJ; Greve J; Graaff R; Aarnoudse JG
    Appl Opt; 1995 Oct; 34(28):6595-611. PubMed ID: 21060515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement depth and volume in laser Doppler flowmetry.
    Fredriksson I; Larsson M; Strömberg T
    Microvasc Res; 2009 Jun; 78(1):4-13. PubMed ID: 19285089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation.
    Figueiras E; Campos R; Semedo S; Oliveira R; Requicha Ferreira LF; Humeau-Heurtier A
    Rev Sci Instrum; 2012 Mar; 83(3):034302. PubMed ID: 22462941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Doppler flowmetry at large interoptode spacing in human tibia diaphysis: Monte Carlo simulations and preliminary experimental results.
    Binzoni T; Boggett D; Van De Ville D
    Physiol Meas; 2011 Nov; 32(11):N33-53. PubMed ID: 22026993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Doppler perfusion imaging by dynamic light scattering.
    Wårdell K; Jakobsson A; Nilsson GE
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):309-16. PubMed ID: 8375866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    Opt Express; 2010 Feb; 18(3):2849-57. PubMed ID: 20174114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium.
    Wojtkiewicz S; Liebert A; Rix H; Zołek N; Maniewski R
    Phys Med Biol; 2009 Feb; 54(3):679-97. PubMed ID: 19131674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [2-dimensional mapping and retinal and papillary microcirculation using scanning laser Doppler flowmetry].
    Michelson G; Groh M; Langhans M; Schmauss B
    Klin Monbl Augenheilkd; 1995 Sep; 207(3):180-90. PubMed ID: 7474787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a new high power, wide separation laser Doppler probe: potential measurement of deeper tissue blood flow.
    Clough G; Chipperfield A; Byrne C; de Mul F; Gush R
    Microvasc Res; 2009 Sep; 78(2):155-61. PubMed ID: 19460391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model.
    Koelink MH; de Mul FF; Greve J; Graaff R; Dassel AC; Aarnoudse JG
    Appl Opt; 1992 Jun; 31(16):3061-7. PubMed ID: 20725251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of perfusion depth on laser Doppler flow measurements with large source-detector spacing.
    Watanabe Y; Okada E
    Appl Opt; 2003 Jun; 42(16):3198-204. PubMed ID: 12790470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast time-domain algorithm for the assessment of tissue blood flow in laser-Doppler flowmetry.
    Binzoni T; Seelamantula CS; Van De Ville D
    Phys Med Biol; 2010 Jul; 55(13):N383-94. PubMed ID: 20530854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-field laser-Doppler imaging and its physiological significance for tissue blood perfusion.
    Binzoni T; Van De Ville D
    Phys Med Biol; 2008 Dec; 53(23):6673-94. PubMed ID: 18997268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.