BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20700649)

  • 1. Lead (Pb) and arsenic (As) bioaccessibility in various soils from south China.
    Cui Y; Chen X
    Environ Monit Assess; 2011 Jun; 177(1-4):481-92. PubMed ID: 20700649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of aging on bioaccessibility of arsenic and lead in soils.
    Liang S; Guan DX; Li J; Zhou CY; Luo J; Ma LQ
    Chemosphere; 2016 May; 151():94-100. PubMed ID: 26930247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment.
    González-Grijalva B; Meza-Figueroa D; Romero FM; Robles-Morúa A; Meza-Montenegro M; García-Rico L; Ochoa-Contreras R
    Sci Total Environ; 2019 Mar; 657():1468-1479. PubMed ID: 30677913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China.
    Lu Y; Yin W; Huang L; Zhang G; Zhao Y
    Environ Geochem Health; 2011 Apr; 33(2):93-102. PubMed ID: 20524051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccessibility of arsenic, lead, and cadmium in contaminated mining/smelting soils: Assessment, modeling, and application for soil environment criteria derivation.
    Xie K; Xie N; Liao Z; Luo X; Peng W; Yuan Y
    J Hazard Mater; 2023 Feb; 443(Pt B):130321. PubMed ID: 36368062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo: the role of oral bioaccessibility and mineralogy in human PHE exposure.
    Boisa N; Bird G; Brewer PA; Dean JR; Entwistle JA; Kemp SJ; Macklin MG
    Environ Int; 2013 Oct; 60():56-70. PubMed ID: 24013020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccessibility of As and Pb in orchard and urban soils amended with phosphate, Fe oxide and organic matter.
    Cai M; McBride MB; Li K; Li Z
    Chemosphere; 2017 Apr; 173():153-159. PubMed ID: 28107713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils.
    Li Y; Zhang MK
    Environ Sci Pollut Res Int; 2013 May; 20(5):3140-8. PubMed ID: 23054795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of lead bioaccessibility in soils around lead battery plants in East China.
    Jin ZF; Zhang ZJ; Zhang H; Liu CQ; Li FL
    Chemosphere; 2015 Jan; 119():1247-1254. PubMed ID: 25460768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions.
    Li J; Li K; Cave M; Li HB; Ma LQ
    J Hazard Mater; 2015 Sep; 295():55-62. PubMed ID: 25911623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic in Playground Soils from Kindergartens and Green Recreational Areas of Bratislava City (Slovakia): Occurrence and Gastric Bioaccessibility.
    Hiller E; Filová L; Jurkovič Ľ; Lachká L; Kulikova T; Šimurková M
    Arch Environ Contam Toxicol; 2018 Oct; 75(3):402-414. PubMed ID: 29770841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method.
    Xia Q; Peng C; Lamb D; Kader M; Mallavarapu M; Naidu R; Ng JC
    Chemosphere; 2016 Jul; 154():343-349. PubMed ID: 27062001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota.
    Du H; Yin N; Cai X; Wang P; Li Y; Fu Y; Sultana MS; Sun G; Cui Y
    Sci Total Environ; 2020 Mar; 708():135227. PubMed ID: 31812419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil.
    De Miguel E; Mingot J; Chacón E; Charlesworth S
    Environ Geochem Health; 2012 Dec; 34(6):677-87. PubMed ID: 23053927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead.
    Fendorf S; La Force MJ; Li G
    J Environ Qual; 2004; 33(6):2049-55. PubMed ID: 15537927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessibility of lead in high carbonate soils.
    Denys S; Caboche J; Tack K; Delalain P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1331-9. PubMed ID: 17654152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation options to reduce bioaccessible and bioavailable lead and arsenic at a smelter impacted site - consideration of treatment efficacy.
    Alankarage D; Betts A; Scheckel KG; Herde C; Cavallaro M; Juhasz AL
    Environ Pollut; 2024 Jan; 341():122881. PubMed ID: 37935301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils.
    Tang XY; Cui YS; Duan J; Tang L
    J Hazard Mater; 2008 Dec; 160(1):29-36. PubMed ID: 18395339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland.
    Farmer JG; Broadway A; Cave MR; Wragg J; Fordyce FM; Graham MC; Ngwenya BT; Bewley RJ
    Sci Total Environ; 2011 Nov; 409(23):4958-65. PubMed ID: 21930292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling Pb bioaccessibility in soils contaminated by mining and smelting activities.
    Caboche J; Denys S; Feidt C; Delalain P; Tack K; Rychen G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1264-74. PubMed ID: 20635294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.