These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 20700692)
61. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum, and their symbiotic bacteria. Hang TD; Choo HY; Lee DW; Lee SM; Kaya HK; Park CG J Microbiol Biotechnol; 2007 Mar; 17(3):420-7. PubMed ID: 18050945 [TBL] [Abstract][Full Text] [Related]
62. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. Bonifassi E; Fischer-Le Saux M; Boemare N; Lanois A; Laumond C; Smart G J Invertebr Pathol; 1999 Sep; 74(2):164-72. PubMed ID: 10486229 [TBL] [Abstract][Full Text] [Related]
63. OxyR is required for oxidative stress resistance of the entomopathogenic bacterium Bientz V; Lanois A; Ginibre N; Pagès S; Ogier JC; George S; Rialle S; Brillard J Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39058385 [No Abstract] [Full Text] [Related]
64. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Addis T; Teshome A; Strauch O; Ehlers RU Appl Microbiol Biotechnol; 2016 May; 100(10):4357-66. PubMed ID: 26701359 [TBL] [Abstract][Full Text] [Related]
65. Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. Ferreira T; van Reenen CA; Endo A; Spröer C; Malan AP; Dicks LMT Int J Syst Evol Microbiol; 2013 Sep; 63(Pt 9):3220-3224. PubMed ID: 23456807 [TBL] [Abstract][Full Text] [Related]
66. Nematode-bacteria mutualism: Selection within the mutualism supersedes selection outside of the mutualism. Morran LT; Penley MJ; Byrd VS; Meyer AJ; O'Sullivan TS; Bashey F; Goodrich-Blair H; Lively CM Evolution; 2016 Mar; 70(3):687-95. PubMed ID: 26867502 [TBL] [Abstract][Full Text] [Related]
67. Pre- and post-association barriers to host switching in sympatric mutualists. Dinges ZM; Phillips RK; Lively CM; Bashey F J Evol Biol; 2022 Jul; 35(7):962-972. PubMed ID: 35661463 [TBL] [Abstract][Full Text] [Related]
68. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. Mucci NC; Jones KA; Cao M; Wyatt MR; Foye S; Kauffman SJ; Richards GR; Taufer M; Chikaraishi Y; Steffan SA; Campagna SR; Goodrich-Blair H mSystems; 2022 Jun; 7(3):e0031222. PubMed ID: 35543104 [TBL] [Abstract][Full Text] [Related]
69. STEINERNEMA ADAMSI N. SP. (RHABDITIDA: STEINERNEMATIDAE), A NEW ENTOMOPATHOGENIC NEMATODE FROM THAILAND. Baniya A; Subkrasae C; Ardpairin J; Anesko K; Vitta A; Dillman AR J Parasitol; 2024 Feb; 110(1):22-39. PubMed ID: 38334188 [TBL] [Abstract][Full Text] [Related]
70. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Cimen H; Touray M; Gulsen SH; Hazir S Appl Microbiol Biotechnol; 2022 Jun; 106(12):4387-4399. PubMed ID: 35723692 [TBL] [Abstract][Full Text] [Related]
71. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. Gouge DH; Snyder JL J Invertebr Pathol; 2006 Mar; 91(3):147-57. PubMed ID: 16448667 [TBL] [Abstract][Full Text] [Related]
72. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Forst S; Dowds B; Boemare N; Stackebrandt E Annu Rev Microbiol; 1997; 51():47-72. PubMed ID: 9343343 [TBL] [Abstract][Full Text] [Related]
73. First report of a symbiotic relationship between Xenorhabdus griffiniae and an unknown Steinernema from South Africa. Dreyer J; Malan AP; Dicks LMT Arch Microbiol; 2018 Mar; 200(2):349-353. PubMed ID: 29170804 [TBL] [Abstract][Full Text] [Related]
74. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Richards GR; Goodrich-Blair H Cell Microbiol; 2009 Jul; 11(7):1025-33. PubMed ID: 19374654 [TBL] [Abstract][Full Text] [Related]
75. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Bisch G; Ogier JC; Médigue C; Rouy Z; Vincent S; Tailliez P; Givaudan A; Gaudriault S Genome Biol Evol; 2016 Jan; 8(1):148-60. PubMed ID: 26769959 [TBL] [Abstract][Full Text] [Related]
76. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture. Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323 [TBL] [Abstract][Full Text] [Related]
77. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Akhurst RJ J Gen Microbiol; 1982 Dec; 128(12):3061-5. PubMed ID: 7183749 [TBL] [Abstract][Full Text] [Related]
78. Characterization of a new isolate of entomopathogenic nematode, Lalramnghaki HC; Vanlalhlimpuia ; Vanramliana ; Lalramliana J Parasit Dis; 2017 Dec; 41(4):1123-1131. PubMed ID: 29114152 [TBL] [Abstract][Full Text] [Related]
79. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224 [TBL] [Abstract][Full Text] [Related]
80. Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts. McMullen JG; McQuade R; Ogier JC; Pagès S; Gaudriault S; Patricia Stock S Microbiology (Reading); 2017 Apr; 163(4):510-522. PubMed ID: 28430102 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]