BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20700758)

  • 21. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition.
    Erridge C; Kennedy S; Spickett CM; Webb DJ
    J Biol Chem; 2008 Sep; 283(36):24748-59. PubMed ID: 18559343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide.
    Abreu MT; Vora P; Faure E; Thomas LS; Arnold ET; Arditi M
    J Immunol; 2001 Aug; 167(3):1609-16. PubMed ID: 11466383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer of monomeric endotoxin from MD-2 to CD14: characterization and functional consequences.
    Teghanemt A; Prohinar P; Gioannini TL; Weiss JP
    J Biol Chem; 2007 Dec; 282(50):36250-6. PubMed ID: 17934216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human conjunctival epithelial cells lack lipopolysaccharide responsiveness due to deficient expression of MD2 but respond after interferon-gamma priming or soluble MD2 supplementation.
    Talreja J; Dileepan K; Puri S; Kabir MH; Segal DM; Stechschulte DJ; Dileepan KN
    Inflammation; 2005 Dec; 29(4-6):170-81. PubMed ID: 17093906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Funiculosin variants and phosphorylated derivatives promote innate immune responses via the Toll-like receptor 4/myeloid differentiation factor-2 complex.
    Okamoto N; Mizote K; Honda H; Saeki A; Watanabe Y; Yamaguchi-Miyamoto T; Fukui R; Tanimura N; Motoi Y; Akashi-Takamura S; Kato T; Fujishita S; Kimura T; Ohto U; Shimizu T; Hirokawa T; Miyake K; Fukase K; Fujimoto Y; Nagai Y; Takatsu K
    J Biol Chem; 2017 Sep; 292(37):15378-15394. PubMed ID: 28754693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.
    Tsukamoto H; Takeuchi S; Kubota K; Kobayashi Y; Kozakai S; Ukai I; Shichiku A; Okubo M; Numasaki M; Kanemitsu Y; Matsumoto Y; Nochi T; Watanabe K; Aso H; Tomioka Y
    J Biol Chem; 2018 Jun; 293(26):10186-10201. PubMed ID: 29760187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14.
    Fu YJ; Xu B; Huang SW; Luo X; Deng XL; Luo S; Liu C; Wang Q; Chen JY; Zhou L
    Acta Pharmacol Sin; 2021 Jan; 42(1):88-96. PubMed ID: 32457419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4.
    Kennedy MN; Mullen GE; Leifer CA; Lee C; Mazzoni A; Dileepan KN; Segal DM
    J Biol Chem; 2004 Aug; 279(33):34698-704. PubMed ID: 15175334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interferon-gamma-induced MD-2 protein expression and lipopolysaccharide (LPS) responsiveness in corneal epithelial cells is mediated by Janus tyrosine kinase-2 activation and direct binding of STAT1 protein to the MD-2 promoter.
    Roy S; Sun Y; Pearlman E
    J Biol Chem; 2011 Jul; 286(27):23753-62. PubMed ID: 21572044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the presence of toll-like receptor 4 system in the human endometrium.
    Hirata T; Osuga Y; Hirota Y; Koga K; Yoshino O; Harada M; Morimoto C; Yano T; Nishii O; Tsutsumi O; Taketani Y
    J Clin Endocrinol Metab; 2005 Jan; 90(1):548-56. PubMed ID: 15509642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2.
    Rallabhandi P; Phillips RL; Boukhvalova MS; Pletneva LM; Shirey KA; Gioannini TL; Weiss JP; Chow JC; Hawkins LD; Vogel SN; Blanco JC
    mBio; 2012; 3(4):. PubMed ID: 22872782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner.
    Honda H; Nagai Y; Matsunaga T; Saitoh S; Akashi-Takamura S; Hayashi H; Fujii I; Miyake K; Muraguchi A; Takatsu K
    J Leukoc Biol; 2012 Jun; 91(6):967-76. PubMed ID: 22422925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2.
    da Silva Correia J; Soldau K; Christen U; Tobias PS; Ulevitch RJ
    J Biol Chem; 2001 Jun; 276(24):21129-35. PubMed ID: 11274165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4.
    Yang J; Qin N; Zhang H; Yang R; Xiang B; Wei Q
    Sci Rep; 2016 Apr; 6():24346. PubMed ID: 27090571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on the molecular expression and regulation of toll pathway in HT-29 cells].
    Chen X; Ouyang Q
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2010 Jul; 41(4):581-5. PubMed ID: 20848773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Innate immune responses to bacterial ligands in the peripheral human lung--role of alveolar epithelial TLR expression and signalling.
    Thorley AJ; Grandolfo D; Lim E; Goldstraw P; Young A; Tetley TD
    PLoS One; 2011; 6(7):e21827. PubMed ID: 21789185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toll-like receptor 4 initiates an innate immune response to lipopolysaccharide in human conjunctival epithelial cells.
    Chung SH; Kweon MN; Lee HK; Choi SI; Yang JY; Kim EK
    Exp Eye Res; 2009 Jan; 88(1):49-56. PubMed ID: 18951893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways.
    Yang Y; Zhou H; Yang Y; Li W; Zhou M; Zeng Z; Xiong W; Wu M; Huang H; Zhou Y; Peng C; Huang C; Li X; Li G
    Mol Immunol; 2007 Feb; 44(5):984-92. PubMed ID: 16675017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance.
    Medvedev AE; Piao W; Shoenfelt J; Rhee SH; Chen H; Basu S; Wahl LM; Fenton MJ; Vogel SN
    J Biol Chem; 2007 Jun; 282(22):16042-53. PubMed ID: 17392283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of mouse MD-2 residues important for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 antibodies, and for conferring LPS and taxol responsiveness on mouse TLR4 by alanine-scanning mutagenesis.
    Kawasaki K; Nogawa H; Nishijima M
    J Immunol; 2003 Jan; 170(1):413-20. PubMed ID: 12496426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.