These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 20701098)
1. Color deconvolution for the analysis of tissue microarrays. Cornish TC; Halushka MK Anal Quant Cytol Histol; 2009 Oct; 31(5):304-12. PubMed ID: 20701098 [TBL] [Abstract][Full Text] [Related]
2. Creation, validation, and quantitative analysis of protein expression in vascular tissue microarrays. Halushka MK; Cornish TC; Lu J; Selvin S; Selvin E Cardiovasc Pathol; 2010; 19(3):136-46. PubMed ID: 19211265 [TBL] [Abstract][Full Text] [Related]
3. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images. Kather JN; Weis CA; Marx A; Schuster AK; Schad LR; Zöllner FG PLoS One; 2015; 10(12):e0145572. PubMed ID: 26717571 [TBL] [Abstract][Full Text] [Related]
4. Quantification of vascular density using a semiautomated technique for immunostained specimens. King TW; Brey EM; Youssef AA; Johnston C; Patrick CW Anal Quant Cytol Histol; 2002 Feb; 24(1):39-48. PubMed ID: 11865948 [TBL] [Abstract][Full Text] [Related]
5. Quantification of immunohistochemical staining by color translation and automated thresholding. Ruifrok AC Anal Quant Cytol Histol; 1997 Apr; 19(2):107-13. PubMed ID: 9113303 [TBL] [Abstract][Full Text] [Related]
6. The development and validation of the Virtual Tissue Matrix, a software application that facilitates the review of tissue microarrays on line. Conway CM; O'Shea D; O'Brien S; Lawler DK; Dodrill GD; O'Grady A; Barrett H; Gulmann C; O'Driscoll L; Gallagher WM; Kay EW; O'Shea DG BMC Bioinformatics; 2006 May; 7():256. PubMed ID: 16707006 [TBL] [Abstract][Full Text] [Related]
7. Virtual tissue microarrays: a novel and viable approach to optimizing tissue microarrays for biomarker research applied to ductal carcinoma in situ. Quintayo MA; Starczynski J; Yan FJ; Wedad H; Nofech-Mozes S; Rakovitch E; Bartlett JM Histopathology; 2014 Jul; 65(1):2-8. PubMed ID: 24267587 [TBL] [Abstract][Full Text] [Related]
8. Robust gridding of TMAs after whole-slide imaging using template matching. Lahrmann B; Halama N; Westphal K; Ernst C; Elsawaf Z; Sinn P; Bosch FX; Dickhaus H; Jäger D; Schirmacher P; Grabe N Cytometry A; 2010 Dec; 77(12):1169-76. PubMed ID: 20662092 [TBL] [Abstract][Full Text] [Related]
9. Automatic nonsubjective estimation of antigen content visualized by immunohistochemistry using color deconvolution. Helps SC; Thornton E; Kleinig TJ; Manavis J; Vink R Appl Immunohistochem Mol Morphol; 2012 Jan; 20(1):82-90. PubMed ID: 22157059 [TBL] [Abstract][Full Text] [Related]
10. A new approach to the validation of tissue microarrays. Goethals L; Perneel C; Debucquoy A; De Schutter H; Borghys D; Ectors N; Geboes K; McBride WH; Haustermans KM J Pathol; 2006 Apr; 208(5):607-14. PubMed ID: 16435284 [TBL] [Abstract][Full Text] [Related]
11. Digital separation of diaminobenzidine-stained tissues via an automatic color-filtering for immunohistochemical quantification. Fu R; Ma X; Bian Z; Ma J Biomed Opt Express; 2015 Feb; 6(2):544-58. PubMed ID: 25780744 [TBL] [Abstract][Full Text] [Related]
12. Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods. Nguyen HG; Blank A; Dawson HE; Lugli A; Zlobec I Sci Rep; 2021 Jan; 11(1):2371. PubMed ID: 33504830 [TBL] [Abstract][Full Text] [Related]
13. Application of automatic image analysis for quantitative morphological studies of peroxisomes in rat liver in conjunction with cytochemical staining with 3-3'-diaminobenzidine and immunocytochemistry. Beier K; Fahimi HD Microsc Res Tech; 1992 Jun; 21(4):271-82. PubMed ID: 1379091 [TBL] [Abstract][Full Text] [Related]
14. Quantitative comparison and reproducibility of pathologist scoring and digital image analysis of estrogen receptor β2 immunohistochemistry in prostate cancer. Rizzardi AE; Zhang X; Vogel RI; Kolb S; Geybels MS; Leung YK; Henriksen JC; Ho SM; Kwak J; Stanford JL; Schmechel SC Diagn Pathol; 2016 Jul; 11(1):63. PubMed ID: 27401406 [TBL] [Abstract][Full Text] [Related]
15. Use and validation of epithelial recognition and fields of view algorithms on virtual slides to guide TMA construction. Barsky S; Gentchev L; Basu A; Jimenez R; Boussaid K; Gholap A Biotechniques; 2009 Nov; 47(5):927-38. PubMed ID: 20041846 [TBL] [Abstract][Full Text] [Related]
16. Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3'-Diaminobenzidine&Haematoxylin. Korzynska A; Roszkowiak L; Lopez C; Bosch R; Witkowski L; Lejeune M Diagn Pathol; 2013 Mar; 8():48. PubMed ID: 23531405 [TBL] [Abstract][Full Text] [Related]
17. DAB-quant: An open-source digital system for quantifying immunohistochemical staining with 3,3'-diaminobenzidine (DAB). Patel S; Fridovich-Keil S; Rasmussen SA; Fridovich-Keil JL PLoS One; 2022; 17(7):e0271593. PubMed ID: 35857792 [TBL] [Abstract][Full Text] [Related]
18. A TMA de-arraying method for high throughput biomarker discovery in tissue research. Wang Y; Savage K; Grills C; McCavigan A; James JA; Fennell DA; Hamilton PW PLoS One; 2011; 6(10):e26007. PubMed ID: 22016800 [TBL] [Abstract][Full Text] [Related]
19. Semiautomated computer-assisted image analysis to quantify 3,3'-diaminobenzidine tetrahydrochloride-immunostained small tissues. Leal S; Diniz C; Sá C; Gonçalves J; Soares AS; Rocha-Pereira C; Fresco P Anal Biochem; 2006 Oct; 357(1):137-43. PubMed ID: 16914112 [TBL] [Abstract][Full Text] [Related]
20. Using Digital Quantification of Stained Tissue Microarrays as a Medium-Throughput, Quantitative Method for Measuring the Kinetics of Signal Transduction. Kalra J; Baker J Methods Mol Biol; 2017; 1554():107-125. PubMed ID: 28185185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]