These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 20701311)
41. Molecular binding scaffolds increase local substrate concentration enhancing the enzymatic hydrolysis of VX nerve agent. Lang X; Hong X; Baker CA; Otto TC; Wheeldon I Biotechnol Bioeng; 2020 Jul; 117(7):1970-1978. PubMed ID: 32239488 [TBL] [Abstract][Full Text] [Related]
42. A mixture of three engineered phosphotriesterases enables rapid detoxification of the entire spectrum of known threat nerve agents. Despotović D; Aharon E; Dubovetskyi A; Leader H; Ashani Y; Tawfik DS Protein Eng Des Sel; 2019 Dec; 32(4):169-174. PubMed ID: 31612205 [TBL] [Abstract][Full Text] [Related]
43. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity. Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656 [TBL] [Abstract][Full Text] [Related]
44. Engineered Recombinant PON1-OPH Fusion Hybrids: Potentially Effective Catalytic Bioscavengers against Organophosphorus Nerve Agent Analogs. Lee N; Yun H; Lee C; Lee Y; Kim E; Kim S; Jeon H; Yu C; Rho J J Microbiol Biotechnol; 2021 Jan; 31(1):144-153. PubMed ID: 33144547 [TBL] [Abstract][Full Text] [Related]
46. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. Meier MM; Rajendran C; Malisi C; Fox NG; Xu C; Schlee S; Barondeau DP; Höcker B; Sterner R; Raushel FM J Am Chem Soc; 2013 Aug; 135(31):11670-7. PubMed ID: 23837603 [TBL] [Abstract][Full Text] [Related]
47. Improvement of enantioselectivity of chiral organophosphate insecticide hydrolysis by bacterial phosphotriesterase. Tsugawa W; Nakamura H; Sode K; Ohuchi S Appl Biochem Biotechnol; 2000; 84-86():311-7. PubMed ID: 10849798 [TBL] [Abstract][Full Text] [Related]
48. [Perspectives in the treatments of poisonings by organophosphorus insecticides and warfare nerve agents]. Sogorb-Sánchez MA; Vilanova-Gisbert E; Carrera-González V Rev Neurol; 2004 Oct 16-31; 39(8):739-47. PubMed ID: 15514903 [TBL] [Abstract][Full Text] [Related]
49. Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. McLoughlin SY; Jackson C; Liu JW; Ollis D Protein Expr Purif; 2005 Jun; 41(2):433-40. PubMed ID: 15866732 [TBL] [Abstract][Full Text] [Related]
50. Trimethylphosphate and Dimethylphosphate Hydrolysis by Binuclear Cd Pinto G; Mazzone G; Russo N; Toscano M Chemistry; 2017 Oct; 23(55):13742-13753. PubMed ID: 28661038 [TBL] [Abstract][Full Text] [Related]
51. Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin. Hemmert AC; Otto TC; Wierdl M; Edwards CC; Fleming CD; MacDonald M; Cashman JR; Potter PM; Cerasoli DM; Redinbo MR Mol Pharmacol; 2010 Apr; 77(4):508-16. PubMed ID: 20051531 [TBL] [Abstract][Full Text] [Related]
52. Crystal structures of brain group-VIII phospholipase A2 in nonaged complexes with the organophosphorus nerve agents soman and sarin. Epstein TM; Samanta U; Kirby SD; Cerasoli DM; Bahnson BJ Biochemistry; 2009 Apr; 48(15):3425-35. PubMed ID: 19271773 [TBL] [Abstract][Full Text] [Related]
53. Phosphotriesterase: a complementary tool for the selective detection of two organophosphate insecticides: chlorpyrifos and chlorfenvinfos. Istamboulie G; Fournier D; Marty JL; Noguer T Talanta; 2009 Mar; 77(5):1627-31. PubMed ID: 19159775 [TBL] [Abstract][Full Text] [Related]
54. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. Yu J; Fu Y; Cao Z J Phys Chem B; 2023 Aug; 127(34):7462-7471. PubMed ID: 37584503 [TBL] [Abstract][Full Text] [Related]
55. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Bouknight KD; Jurkouich KM; Compton JR; Khavrutskii IV; Guelta MA; Harvey SP; Legler PM Biochem Pharmacol; 2020 Jul; 177():113980. PubMed ID: 32305437 [TBL] [Abstract][Full Text] [Related]
56. Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication. Soares FV; de Castro AA; Pereira AF; Leal DHS; Mancini DT; Krejcar O; Ramalho TC; da Cunha EFF; Kuca K Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29690585 [TBL] [Abstract][Full Text] [Related]
57. Structure of a Novel Phosphotriesterase from Sphingobium sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold. Mabanglo MF; Xiang DF; Bigley AN; Raushel FM Biochemistry; 2016 Jul; 55(28):3963-74. PubMed ID: 27353520 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the phosphotriesterase capable of hydrolyzing aryl-organophosphate flame retardants. Wang J; Yuan L; Wu W; Yan Y Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6493-6504. PubMed ID: 36107214 [TBL] [Abstract][Full Text] [Related]
59. Update on biochemical properties of recombinant Pseudomonas diminuta phosphotriesterase. Carletti E; Jacquamet L; Loiodice M; Rochu D; Masson P; Nachon F J Enzyme Inhib Med Chem; 2009 Aug; 24(4):1045-55. PubMed ID: 19548794 [TBL] [Abstract][Full Text] [Related]
60. Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. Amitai G; Gaidukov L; Adani R; Yishay S; Yacov G; Kushnir M; Teitlboim S; Lindenbaum M; Bel P; Khersonsky O; Tawfik DS; Meshulam H FEBS J; 2006 May; 273(9):1906-19. PubMed ID: 16640555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]