These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20701348)

  • 1. Observations of high-density ferroelectric ordered water in kaolinite trenches using Monte Carlo simulations.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2010 Aug; 114(32):8396-405. PubMed ID: 20701348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water adsorption on kaolinite surfaces containing trenches.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2010 Feb; 114(5):2171-8. PubMed ID: 20085249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2008 Oct; 112(43):10708-12. PubMed ID: 18785690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of water adsorption on kaolinite under atmospheric conditions.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2009 Jul; 113(27):7826-33. PubMed ID: 19514713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of proton order and disorder in ice Ih.
    Rick SW
    J Chem Phys; 2005 Mar; 122(9):094504. PubMed ID: 15836147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.
    Szori M; Jedlovszky P; Roeselová M
    Phys Chem Chem Phys; 2010 May; 12(18):4604-16. PubMed ID: 20428540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation.
    Striolo A; Chialvo AA; Gubbins KE; Cummings PT
    J Chem Phys; 2005 Jun; 122(23):234712. PubMed ID: 16008478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method.
    Hantal G; Picaud S; Hoang PN; Voloshin VP; Medvedev NN; Jedlovszky P
    J Chem Phys; 2010 Oct; 133(14):144702. PubMed ID: 20950025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of two new solid phases of water: Ice XIII and ice XIV.
    Martin-Conde M; MacDowell LG; Vega C
    J Chem Phys; 2006 Sep; 125(11):116101. PubMed ID: 16999507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface energy and surface proton order of the ice Ih basal and prism surfaces.
    Pan D; Liu LM; Tribello GA; Slater B; Michaelides A; Wang E
    J Phys Condens Matter; 2010 Feb; 22(7):074209. PubMed ID: 21386387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo molecular simulation of the hydration of K-montmorillonite at 353 K and 625 bar.
    Chávez Mde L; de Pablo L; de Pablo JJ
    Langmuir; 2004 Nov; 20(24):10764-70. PubMed ID: 15544414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does water condense in carbon pores?
    Liu JC; Monson PA
    Langmuir; 2005 Oct; 21(22):10219-25. PubMed ID: 16229548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J; Pellenq RJ
    J Phys Chem B; 2008 May; 112(20):6390-7. PubMed ID: 18433164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption isotherms of water on mica: redistribution and film growth.
    Malani A; Ayappa KG
    J Phys Chem B; 2009 Jan; 113(4):1058-67. PubMed ID: 19123830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C; Abascal JL
    J Chem Phys; 2005 Oct; 123(14):144504. PubMed ID: 16238404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel canonical Monte Carlo simulations through sequential updating of particles.
    O'Keeffe CJ; Orkoulas G
    J Chem Phys; 2009 Apr; 130(13):134109. PubMed ID: 19355719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.