BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20701949)

  • 1. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water.
    Rickman KA; Mezyk SP
    Chemosphere; 2010 Sep; 81(3):359-65. PubMed ID: 20701949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl-radical-induced degradative oxidation of beta-lactam antibiotics in water: absolute rate constant measurements.
    Dail MK; Mezyk SP
    J Phys Chem A; 2010 Aug; 114(32):8391-5. PubMed ID: 20701347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-radical destruction of beta-lactam antibiotics in aqueous solution.
    Song W; Chen W; Cooper WJ; Greaves J; Miller GE
    J Phys Chem A; 2008 Aug; 112(32):7411-7. PubMed ID: 18637660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: kinetic studies and degradation mechanism.
    Santoke H; Song W; Cooper WJ; Greaves J; Miller GE
    J Phys Chem A; 2009 Jul; 113(27):7846-51. PubMed ID: 19507813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation.
    He X; Mezyk SP; Michael I; Fatta-Kassinos D; Dionysiou DD
    J Hazard Mater; 2014 Aug; 279():375-83. PubMed ID: 25086235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water.
    Toth JE; Rickman KA; Venter AR; Kiddle JJ; Mezyk SP
    J Phys Chem A; 2012 Oct; 116(40):9819-24. PubMed ID: 22900636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation.
    Benner J; Salhi E; Ternes T; von Gunten U
    Water Res; 2008 Jun; 42(12):3003-12. PubMed ID: 18472125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes.
    He X; de la Cruz AA; O'Shea KE; Dionysiou DD
    Water Res; 2014 Oct; 63():168-78. PubMed ID: 25000199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-radical-induced oxidative and reductive degradation of fibrate pharmaceuticals: kinetic studies and degradation mechanisms.
    Razavi B; Song W; Cooper WJ; Greaves J; Jeong J
    J Phys Chem A; 2009 Feb; 113(7):1287-94. PubMed ID: 19154149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter.
    Lutze HV; Bakkour R; Kerlin N; von Sonntag C; Schmidt TC
    Water Res; 2014 Apr; 53():370-7. PubMed ID: 24565691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: The role of five-membered heterocyclic rings.
    Zhou L; Yang X; Ji Y; Wei J
    Sci Total Environ; 2019 Nov; 692():201-208. PubMed ID: 31344571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pH on persulfate oxidation of TCE at ambient temperatures.
    Liang C; Wang ZS; Bruell CJ
    Chemosphere; 2007 Jan; 66(1):106-13. PubMed ID: 16814844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.
    Criquet J; Nebout P; Karpel Vel Leitner N
    Water Sci Technol; 2010; 61(5):1221-6. PubMed ID: 20220244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.
    Ji Y; Ferronato C; Salvador A; Yang X; Chovelon JM
    Sci Total Environ; 2014 Feb; 472():800-8. PubMed ID: 24342085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics.
    Fang GD; Dionysiou DD; Wang Y; Al-Abed SR; Zhou DM
    J Hazard Mater; 2012 Aug; 227-228():394-401. PubMed ID: 22683213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes.
    Jeong J; Song W; Cooper WJ; Jung J; Greaves J
    Chemosphere; 2010 Jan; 78(5):533-40. PubMed ID: 20022625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of Ampicillin with antibiotic activity removal using persulfate and submersible UVC LED: Kinetics, mechanism, electrical energy and cost analysis.
    Raikar LG; Gandhi J; Gupta KVK; Prakash H
    Chemosphere; 2024 Feb; 349():140831. PubMed ID: 38040251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition and mineralization of cefaclor by ionizing radiation: kinetics and effects of the radical scavengers.
    Yu S; Lee B; Lee M; Cho IH; Chang SW
    Chemosphere; 2008 May; 71(11):2106-12. PubMed ID: 18308367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation kinetics of antibiotics during water treatment with potassium permanganate.
    Hu L; Martin HM; Strathmann TJ
    Environ Sci Technol; 2010 Aug; 44(16):6416-22. PubMed ID: 20704243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation.
    Suarez S; Dodd MC; Omil F; von Gunten U
    Water Res; 2007 Jun; 41(12):2481-90. PubMed ID: 17467034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.