BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20701989)

  • 1. Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures.
    Hutchins CM; Simon DF; Zerges W; Wilkinson KJ
    Aquat Toxicol; 2010 Oct; 100(1):120-7. PubMed ID: 20701989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ evaluation of cadmium biomarkers in green algae.
    Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ
    Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.
    Abboud P; Wilkinson KJ
    Environ Pollut; 2013 Aug; 179():33-8. PubMed ID: 23644273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii.
    Webster RE; Dean AP; Pittman JK
    Environ Sci Technol; 2011 Sep; 45(17):7489-96. PubMed ID: 21809879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential marker enzymes and metal-metal interactions in Helisoma duryi and Lymnaea natalensis exposed to cadmium.
    Masola B; Chibi M; Kandare E; Naik YS; Zaranyika MF
    Ecotoxicol Environ Saf; 2008 May; 70(1):79-87. PubMed ID: 17919723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation.
    Rubinelli P; Siripornadulsil S; Gao-Rubinelli F; Sayre RT
    Planta; 2002 May; 215(1):1-13. PubMed ID: 12012236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper.
    Chen Z; Zhu L; Wilkinson KJ
    Environ Sci Technol; 2010 May; 44(9):3580-6. PubMed ID: 20384345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate.
    Geist J; Werner I; Eder KJ; Leutenegger CM
    Aquat Toxicol; 2007 Nov; 85(1):28-39. PubMed ID: 17767966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus).
    Woo S; Yum S; Park HS; Lee TK; Ryu JC
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):289-99. PubMed ID: 18760381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation.
    An YJ; Kim YM; Kwon TI; Jeong SW
    Sci Total Environ; 2004 Jun; 326(1-3):85-93. PubMed ID: 15142768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study.
    Flouty R; Estephane G
    J Environ Manage; 2012 Nov; 111():106-14. PubMed ID: 22835654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca.
    Shuhaimi-Othman M; Pascoe D
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):29-35. PubMed ID: 16647753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure: discrepancy between mRNA and protein responses.
    Paul-Pont I; Gonzalez P; Baudrimont M; Nili H; de Montaudouin X
    Aquat Toxicol; 2010 May; 97(3):260-7. PubMed ID: 20045202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm, Crassostrea virginica.
    Sanni B; Williams K; Sokolov EP; Sokolova IM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):101-12. PubMed ID: 17869588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.