These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20702078)

  • 21. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.
    Dewil R; Baeyens J; Appels L
    J Hazard Mater; 2007 Jun; 144(3):703-7. PubMed ID: 17321678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan.
    Kuo NW; Ma HW; Yang YM; Hsiao TY; Huang CM
    Waste Manag; 2007; 27(11):1673-9. PubMed ID: 17716888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emission characteristics of heavy metals and their behavior during coking processes.
    Mu L; Peng L; Liu X; Bai H; Song C; Wang Y; Li Z
    Environ Sci Technol; 2012 Jun; 46(11):6425-30. PubMed ID: 22607524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.
    Jambhulkar HP; Juwarkar AA
    Ecotoxicol Environ Saf; 2009 May; 72(4):1122-8. PubMed ID: 19171381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury and other trace elements in sediment cores from central Texas lakes.
    Menounou N; Presley BJ
    Arch Environ Contam Toxicol; 2003 Jul; 45(1):11-29. PubMed ID: 12948169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-processing of solid wastes and secondary resources for metal extraction - A review.
    Lee JC; Pandey BD
    Waste Manag; 2012 Jan; 32(1):3-18. PubMed ID: 21925857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes.
    Chang FY; Wey MY
    J Hazard Mater; 2006 Dec; 138(3):594-603. PubMed ID: 16839684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.
    Jung CH; Matsuto T; Tanaka N; Okada T
    Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neutralization of an extremely acidic sludge and stabilization of heavy metals in flyash aggregates.
    Polat M; Guler E; Lederman E; Cohen H
    Waste Manag; 2007; 27(4):482-9. PubMed ID: 16677810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.
    Chindaprasirt P; Rattanasak U
    Waste Manag; 2010 Apr; 30(4):667-72. PubMed ID: 19854038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.
    Barbosa R; Lapa N; Boavida D; Lopes H; Gulyurtlu I; Mendes B
    J Hazard Mater; 2009 Oct; 170(2-3):902-9. PubMed ID: 19515486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of trace elements leaching of coal combustion residues from Bokaro Thermal Power Station.
    Singh G; Kumar R; Kumar P
    J Environ Sci Eng; 2007 Jan; 49(1):77-86. PubMed ID: 18472566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of mercury in by-products from a Dutch co-combustion power station.
    Rallo M; Lopez-Anton MA; Meij R; Perry R; Maroto-Valer MM
    J Hazard Mater; 2010 Feb; 174(1-3):28-33. PubMed ID: 19773118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recycling of coal combustion wastes.
    Oz D; Koca S; Koca H
    Waste Manag Res; 2009 May; 27(3):267-73. PubMed ID: 19443646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.
    Fan Y; Zhang FS; Zhu J; Liu Z
    J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery.
    Jung CH; Osako M
    Waste Manag; 2009 May; 29(5):1532-40. PubMed ID: 18926690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.
    Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T
    J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices.
    Song GJ; Kim KH; Seo YC; Kim SC
    Waste Manag; 2004; 24(1):99-106. PubMed ID: 14672729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal vaporization and abatement during thermal treatment of modified wastes.
    Rio S; Verwilghen C; Ramaroson J; Nzihou A; Sharrock P
    J Hazard Mater; 2007 Sep; 148(3):521-8. PubMed ID: 17467894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutagenicity and genotoxicity of coal fly ash water leachate.
    Chakraborty R; Mukherjee A
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):838-42. PubMed ID: 18995907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.