BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20702602)

  • 1. Effects of dietary K on cell-surface expression of renal ion channels and transporters.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F890-7. PubMed ID: 20702602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of Na+ vs. K+ by the rat cortical collecting duct.
    Frindt G; Houde V; Palmer LG
    Am J Physiol Renal Physiol; 2011 Jul; 301(1):F14-20. PubMed ID: 21454253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.
    Veiras LC; Han J; Ralph DL; McDonough AA
    Hypertension; 2016 Oct; 68(4):904-12. PubMed ID: 27600183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
    Chu PY; Quigley R; Babich V; Huang CL
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1179-87. PubMed ID: 12952855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the sodium and potassium transporters in the course of chronic renal failure.
    Kim S; Heo NJ; Jung JY; Son MJ; Jang HR; Lee JW; Oh YK; Na KY; Joo KW; Han JS
    Nephron Physiol; 2010; 115(4):p31-41. PubMed ID: 20460940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F389-96. PubMed ID: 19474187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential gene regulation of renal salt entry pathways by salt load in the distal nephron of the rat.
    Wolf K; Castrop H; Riegger GA; Kurtz A; Krämer BK
    Pflugers Arch; 2001 Jul; 442(4):498-504. PubMed ID: 11510880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters' abundance along the nephron.
    Nguyen MT; Yang LE; Fletcher NK; Lee DH; Kocinsky H; Bachmann S; Delpire E; McDonough AA
    Am J Physiol Renal Physiol; 2012 Jul; 303(1):F92-104. PubMed ID: 22496411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upregulation of apical sodium-chloride cotransporter and basolateral chloride channels is responsible for the maintenance of salt-sensitive hypertension.
    Capasso G; Rizzo M; Garavaglia ML; Trepiccione F; Zacchia M; Mugione A; Ferrari P; Paulmichl M; Lang F; Loffing J; Carrel M; Damiano S; Wagner CA; Bianchi G; Meyer G
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F556-67. PubMed ID: 18480177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered renal expression of Na(+) transporters and ROMK in protein-deprived rats.
    Ruete MC; Carrizo LC; Bocanegra MV; Vallés PG
    Nephron Physiol; 2009; 111(3):p17-29. PubMed ID: 19202345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status.
    Yang LE; Sandberg MB; Can AD; Pihakaski-Maunsbach K; McDonough AA
    Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1003-16. PubMed ID: 18653479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired distal renal potassium handling in streptozotocin-induced diabetic mice.
    Wu P; Li ST; Shu TT; Mao ZH; Fu WJ; Yang YY; Pan SK; Liu DW; Liu ZS; Gao ZX
    Am J Physiol Renal Physiol; 2024 Jul; 327(1):F158-F170. PubMed ID: 38779755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction.
    Masilamani S; Wang X; Kim GH; Brooks H; Nielsen J; Nielsen S; Nakamura K; Stokes JB; Knepper MA
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F648-57. PubMed ID: 12217855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1249-55. PubMed ID: 19741015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation of sodium-chloride cotransporter expression and blood pressure during chronic high dietary potassium supplementation.
    Little R; Murali SK; Poulsen SB; Grimm PR; Assmus A; Cheng L; Ivy JR; Hoorn EJ; Matchkov V; Welling PA; Fenton RA
    JCI Insight; 2023 Mar; 8(5):. PubMed ID: 36719746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of renal Na transporters in response to dietary K.
    Yang L; Xu S; Guo X; Uchida S; Weinstein AM; Wang T; Palmer LG
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1032-F1041. PubMed ID: 29923764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental expression of ROMK in rat kidney.
    Zolotnitskaya A; Satlin LM
    Am J Physiol; 1999 Jun; 276(6):F825-36. PubMed ID: 10362771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of distal nephron Na
    Frindt G; Yang L; Uchida S; Weinstein AM; Palmer LG
    Am J Physiol Renal Physiol; 2017 Jul; 313(1):F62-F73. PubMed ID: 28356292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ENaC and ROMK channels in the connecting tubule regulate renal K+ secretion.
    Yang L; Xu Y; Gravotta D; Frindt G; Weinstein AM; Palmer LG
    J Gen Physiol; 2021 Aug; 153(8):. PubMed ID: 34143184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
    Leng Q; Kahle KT; Rinehart J; MacGregor GG; Wilson FH; Canessa CM; Lifton RP; Hebert SC
    J Physiol; 2006 Mar; 571(Pt 2):275-86. PubMed ID: 16357011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.