BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20702720)

  • 1. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth.
    Carmel JB; Berrol LJ; Brus-Ramer M; Martin JH
    J Neurosci; 2010 Aug; 30(32):10918-26. PubMed ID: 20702720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury.
    Carmel JB; Kimura H; Berrol LJ; Martin JH
    Eur J Neurosci; 2013 Apr; 37(7):1090-102. PubMed ID: 23360401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury.
    Brus-Ramer M; Carmel JB; Chakrabarty S; Martin JH
    J Neurosci; 2007 Dec; 27(50):13793-801. PubMed ID: 18077691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.
    Carmel JB; Kimura H; Martin JH
    J Neurosci; 2014 Jan; 34(2):462-6. PubMed ID: 24403146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model.
    Sharif H; Alexander H; Azam A; Martin JH
    Exp Neurol; 2021 Jul; 341():113715. PubMed ID: 33819448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats.
    Yang Q; Ramamurthy A; Lall S; Santos J; Ratnadurai-Giridharan S; Lopane M; Zareen N; Alexander H; Ryan D; Martin JH; Carmel JB
    Exp Neurol; 2019 Oct; 320():112962. PubMed ID: 31125548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function.
    Carmel JB; Martin JH
    Front Integr Neurosci; 2014; 8():51. PubMed ID: 24994971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.
    Wen TC; Lall S; Pagnotta C; Markward J; Gupta D; Ratnadurai-Giridharan S; Bucci J; Greenwald L; Klugman M; Hill NJ; Carmel JB
    Front Neural Circuits; 2018; 12():28. PubMed ID: 29706871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury.
    Maier IC; Baumann K; Thallmair M; Weinmann O; Scholl J; Schwab ME
    J Neurosci; 2008 Sep; 28(38):9386-403. PubMed ID: 18799672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
    Salimi I; Friel KM; Martin JH
    J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury.
    Martin JH
    Neural Regen Res; 2016 Sep; 11(9):1389-1391. PubMed ID: 27857728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment.
    Liu Z; Li Y; Zhang X; Savant-Bhonsale S; Chopp M
    Stroke; 2008 Sep; 39(9):2571-7. PubMed ID: 18617661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice.
    Steward O; Zheng B; Tessier-Lavigne M; Hofstadter M; Sharp K; Yee KM
    J Neurosci; 2008 Jul; 28(27):6836-47. PubMed ID: 18596159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
    Omoto S; Ueno M; Mochio S; Yamashita T
    Neurosci Res; 2011 Mar; 69(3):187-95. PubMed ID: 21147179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.