BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20702722)

  • 1. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP
    J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT; Buzzard M; Borress R; Dhillon S
    J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish.
    Tokuoka H; Yoshida T; Matsuda N; Mishina M
    J Neurosci; 2002 Dec; 22(23):10324-32. PubMed ID: 12451132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo.
    Edwards JA; Cline HT
    J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B; Koch E; Schmidt JT
    Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B; Nikolakopoulou AM; Cohen-Cory S
    Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptor-mediated refinement of a transient retinotectal projection during development requires nitric oxide.
    Ernst AF; Wu HH; El-Fakahany EE; McLoon SC
    J Neurosci; 1999 Jan; 19(1):229-35. PubMed ID: 9870953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum.
    Robles E; Filosa A; Baier H
    J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons.
    Kaethner RJ; Stuermer CA
    J Neurosci; 1992 Aug; 12(8):3257-71. PubMed ID: 1494955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.
    Cline HT; Constantine-Paton M
    J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map.
    Gnuegge L; Schmid S; Neuhauss SC
    J Neurosci; 2001 May; 21(10):3542-8. PubMed ID: 11331383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinotopic order in the absence of axon competition.
    Gosse NJ; Nevin LM; Baier H
    Nature; 2008 Apr; 452(7189):892-5. PubMed ID: 18368050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.
    Stuermer CA; Rohrer B; Münz H
    J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain.
    Manitt C; Nikolakopoulou AM; Almario DR; Nguyen SA; Cohen-Cory S
    J Neurosci; 2009 Sep; 29(36):11065-77. PubMed ID: 19741113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of activity on axon pathfinding in the optic tectum.
    Kita EM; Scott EK; Goodhill GJ
    Dev Neurobiol; 2015 Jun; 75(6):608-20. PubMed ID: 25556913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
    Witte S; Stier H; Cline HT
    J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for the polarity complex and PI3 kinase in branch formation within retinotectal arbors of zebrafish.
    Schmidt JT; Mariconda L; Morillo F; Apraku E
    Dev Neurobiol; 2014 Jun; 74(6):591-601. PubMed ID: 24218155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.