These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 2070275)
1. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Fratzl P; Fratzl-Zelman N; Klaushofer K; Vogl G; Koller K Calcif Tissue Int; 1991 Jun; 48(6):407-13. PubMed ID: 2070275 [TBL] [Abstract][Full Text] [Related]
2. Mineral crystals in calcified tissues: a comparative study by SAXS. Fratzl P; Groschner M; Vogl G; Plenk H; Eschberger J; Fratzl-Zelman N; Koller K; Klaushofer K J Bone Miner Res; 1992 Mar; 7(3):329-34. PubMed ID: 1585835 [TBL] [Abstract][Full Text] [Related]
3. The nature of the mineral component of bone and the mechanism of calcification. Glimcher MJ Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562 [TBL] [Abstract][Full Text] [Related]
4. Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Fratzl P; Schreiber S; Boyde A Calcif Tissue Int; 1996 May; 58(5):341-6. PubMed ID: 8661969 [TBL] [Abstract][Full Text] [Related]
5. Bone mineralization as studied by small-angle x-ray scattering. Fratzl P; Schreiber S; Klaushofer K Connect Tissue Res; 1996; 34(4):247-54. PubMed ID: 9084633 [TBL] [Abstract][Full Text] [Related]
6. Lateral packing of mineral crystals in bone collagen fibrils. Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799 [TBL] [Abstract][Full Text] [Related]
7. Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Grabner B; Landis WJ; Roschger P; Rinnerthaler S; Peterlik H; Klaushofer K; Fratzl P Bone; 2001 Nov; 29(5):453-7. PubMed ID: 11704498 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone. Lee DD; Glimcher MJ J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036 [TBL] [Abstract][Full Text] [Related]
9. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Fratzl-Zelman N; Schmidt I; Roschger P; Glorieux FH; Klaushofer K; Fratzl P; Rauch F; Wagermaier W Bone; 2014 Mar; 60():122-8. PubMed ID: 24296239 [TBL] [Abstract][Full Text] [Related]
10. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671 [TBL] [Abstract][Full Text] [Related]
11. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. Fratzl P; Paris O; Klaushofer K; Landis WJ J Clin Invest; 1996 Jan; 97(2):396-402. PubMed ID: 8567960 [TBL] [Abstract][Full Text] [Related]
12. Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle X-ray scattering and backscattered electron imaging study. Fratzl P; Schreiber S; Roschger P; Lafage MH; Rodan G; Klaushofer K J Bone Miner Res; 1996 Feb; 11(2):248-53. PubMed ID: 8822349 [TBL] [Abstract][Full Text] [Related]
13. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Mahamid J; Aichmayer B; Shimoni E; Ziblat R; Li C; Siegel S; Paris O; Fratzl P; Weiner S; Addadi L Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6316-21. PubMed ID: 20308589 [TBL] [Abstract][Full Text] [Related]
14. On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis. Bertolotti F; Carmona FJ; Dal Sasso G; Ramírez-Rodríguez GB; Delgado-López JM; Pedersen JS; Ferri F; Masciocchi N; Guagliardi A Acta Biomater; 2021 Jan; 120():167-180. PubMed ID: 32438109 [TBL] [Abstract][Full Text] [Related]
15. Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase. Tesch W; Vandenbos T; Roschgr P; Fratzl-Zelman N; Klaushofer K; Beertsen W; Fratzl P J Bone Miner Res; 2003 Jan; 18(1):117-25. PubMed ID: 12510812 [TBL] [Abstract][Full Text] [Related]
16. Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy. Boothroyd B Clin Orthop Relat Res; 1975; (106):290-310. PubMed ID: 165025 [TBL] [Abstract][Full Text] [Related]
17. Relationships between bone protein and mineral in developing porcine long bone and calvaria. Sodek KL; Tupy JH; Sodek J; Grynpas MD Bone; 2000 Feb; 26(2):189-98. PubMed ID: 10678415 [TBL] [Abstract][Full Text] [Related]
18. Alterations in collagen and mineral nanostructure observed in osteoporosis and pharmaceutical treatments using simultaneous small- and wide-angle X-ray scattering. Acerbo AS; Kwaczala AT; Yang L; Judex S; Miller LM Calcif Tissue Int; 2014 Nov; 95(5):446-56. PubMed ID: 25190190 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy. Hoshi K; Ejiri S; Ozawa H Ital J Anat Embryol; 2001; 106(2 Suppl 1):141-50. PubMed ID: 11729949 [TBL] [Abstract][Full Text] [Related]
20. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals. Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]