These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20703627)

  • 1. 3D image analysis and artificial intelligence for bone disease classification.
    Akgundogdu A; Jennane R; Aufort G; Benhamou CL; Ucan ON
    J Med Syst; 2010 Oct; 34(5):815-28. PubMed ID: 20703627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic algorithm and image processing for osteoporosis diagnosis.
    Jennane R; Almhdie-Imjabber A; Hambli R; Ucan ON; Benhamou CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5597-600. PubMed ID: 21096487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis.
    Borah B; Gross GJ; Dufresne TE; Smith TS; Cockman MD; Chmielewski PA; Lundy MW; Hartke JR; Sod EW
    Anat Rec; 2001 Apr; 265(2):101-10. PubMed ID: 11323772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape classification techniques for discrete 3D porous media. Application to trabecular bone.
    Aufort G; Jennane R; Harba R; Benhamou CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5536-9. PubMed ID: 18003266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology).
    Wang X; Zauel RR; Rao DS; Fyhrie DP
    Bone; 2008 Jun; 42(6):1184-92. PubMed ID: 18378204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.
    Sun ZL; Au KF; Choi TM
    IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1321-31. PubMed ID: 17926712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR image segmentation using phase information and a novel multiscale scheme.
    Bourgeat P; Fripp J; Stanwell P; Ramadan S; Ourselin S
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):920-7. PubMed ID: 17354861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods.
    Saha PK; Xu Y; Duan H; Heiner A; Liang G
    IEEE Trans Med Imaging; 2010 Nov; 29(11):1821-38. PubMed ID: 20562041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary study on discrimination of osteoporotic fractured group from nonfractured group using support vector machine.
    Lee S; Lee JW; Jeong JW; Yoo DS; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():474-7. PubMed ID: 19162696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Face recognition using total margin-based adaptive fuzzy support vector machines.
    Liu YH; Chen YT
    IEEE Trans Neural Netw; 2007 Jan; 18(1):178-92. PubMed ID: 17278471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
    Güler I; Ubeyli ED
    J Neurosci Methods; 2005 Oct; 148(2):113-21. PubMed ID: 16054702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of renal failure disease using Adaptive Neuro-Fuzzy Inference System.
    Akgundogdu A; Kurt S; Kilic N; Ucan ON; Akalin N
    J Med Syst; 2010 Dec; 34(6):1003-9. PubMed ID: 20703607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of structure extraction methods for in vivo trabecular bone measurements.
    Laib A; Rüegsegger P
    Comput Med Imaging Graph; 1999; 23(2):69-74. PubMed ID: 10227372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive study on feature types for osteoporosis classification in dental panoramic radiographs.
    Alzubaidi MA; Otoom M
    Comput Methods Programs Biomed; 2020 May; 188():105301. PubMed ID: 31911333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images.
    van Rietbergen B; Majumdar S; Pistoia W; Newitt DC; Kothari M; Laib A; Rüegsegger P
    Technol Health Care; 1998 Dec; 6(5-6):413-20. PubMed ID: 10100943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of cancellous bone failure in the vertebral body of healthy and osteoporotic subjects.
    Boccaccio A; Vena P; Gastaldi D; Franzoso G; Pietrabissa R; Pappalettere C
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1023-36. PubMed ID: 19024151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singularity-free finite element model of bone through automated voxel-based reconstruction.
    Esposito L; Bifulco P; Gargiulo P; Fraldi M
    Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):257-262. PubMed ID: 25723404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full supervised learning for osteoporosis diagnosis using micro-CT images.
    Xu Y; Li D; Chen Q; Fan Y
    Microsc Res Tech; 2013 Apr; 76(4):333-41. PubMed ID: 23334951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.